997 resultados para Ethanol chemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solubility of water in the hydrophobic 1-alkyl-3-methylimidazolium hexafluorophosphate (alkyl = butyl, hexyl, and octyl) ionic liquids, can be significantly increased in the presence of ethanol as a co-solute. 1-Hexyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate are completely miscible with ethanol, and immiscible with water, whereas 1-butyl-3-methylimidazolium hexafluorophosphate is totally miscible with aqueous ethanol only between 0.5-0.9 mole fraction ethanol at 25degreesC. At higher and lower mole fraction of ethanol, the aqueous and IL components are only partially miscible and a biphasic system is obtained upon mixing equal volumes of the IL and aqueous ethanol. The observation of a large range of total miscibility between water and the IL in the three-component system has important implications for purifications and separations from IL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calculated answer: First-principles calculations have been applied to calculate the energy barrier for the key step in CO formation on a Pt surface (see picture; Pt blue, Pt atoms on step edge yellow) to understand the low CO2 selectivity in the direct ethanol fuel cell. The presence of surface oxidant species such as O (brown bar) and OH (red bar) led to an increase of the energy barrier and thus an inhibition of the key step. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot molecular cores in star-forming regions are known to have gas-phase chemical compositions determined by the evaporation of material from the icy mantles of interstellar grains, followed by subsequent reactions in the gas phase. Current models suggest that the evaporated material is rich in hydrogenated species, such as water, methane and methanol. In this paper, we report the detection of 14 rotational transitions of ethanol in the submillimetre spectrum of the molecular cloud associated with the ultra-compact H II region G34.3+0.15. We derive a rotation temperature of 125 K and a beam-averaged column density of 2.0x10(15) cm(-2), corresponding to a fractional abundance on the order of 4x10(-9). This large abundance, which is a lower limit due to the likelihood of beam dilution, cannot be made by purely gas-phase processes, and we conclude that the ethanol must be formed efficiently in the grain surface chemistry. Since it has been argued previously that methanol is formed via surface chemistry, it appears that alcohol formation may be a natural by-product of surface reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol adsorption-desorption isotherms on well-organized mesoporous silica and titania films with hexagonal pores structure were studied by ellipsometric porosimetry. The mesopore volume Was calculated from the change of the effective refractive index at the end points of the isotherm. An improved Derjaguin-Broekhoff-de Boer (IDBdB) model for cylindrical pores is proposed for the determination of the pore size. In this model, the disjoining pressure isotherms were obtained by measuring the thickness of the ethanol film on a non-porous film with the same chemical composition. This approach eliminates uncertainties related to the application of the statistical film thickness determined via t-plots in previous versions of the DBdB model. The deviation in the surface tension of ethanol in the mesopores from that of a flat interface was described by the Tolman parameter in the Gibbs-Tolman-Koening-Buff equation. A positive value of the Tolman parameter of 0.2 nm was found from the fitting of the desorption branch of the isotherms to the experimental data obtained by Low Angle X-ray Diffraction (LA-XRD) and Transmission Electron Microscopy (TEM) measurements in the range of pore diameters between 2.1 and 8.3 nm. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communication: Coatings Of Yellow gamma-WO3 are deposited on glass by APCVD of WOCl4 and either ethanol or ethylacetate at 350-450degreesC. The yellow films show significant photoactivity for the destruction of stearic acid, and photoinduced superhydrophilicity. Preparation of blue reduced WO2.92 films from the same reaction at higher substrate temperatures of 500-600degreesC (Figure) is also found to be possible. These films show no photoactivity, but can be converted into the fully stoichiometric photoactive form simply by heating in air.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study employs density functional theory (DFT) calculations to examine the mechanism by which acetaldehyde is formed on platinum in a typical direct ethanol fuel cell (DEFC). A pathway is found involving the formation of a strongly hydrogen-bonded complex between adsorbed ethanol and the surface hydroxyl (OH) species, followed by the facile alpha-dehydrogenation of ethanol, with spontaneous weakening of the hydrogen bond in favor of adsorbed acetaldehyde and water. This mechanism is found to be comparably viable on both the close-packed surface and the monatomic steps. Comparison of further reactions on these two sites strongly indicates that the steps act as net removers of acetaldehyde from the product stream, while the flat surface acts as a net producer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First principles calculations with molecular dynamics are
utilized to simulate a simplified electrical double layer formed in the
active electric potential region during the electrocatalytic oxidation of
ethanol on Pd electrodes running in an alkaline electrolyte. Our
simulations provide an atomic level insight into how ethanol oxidation
occurs in fuel cells: New mechanisms in the presence of the simplified
electrical double layer are found to be different from the traditional
ones; through concerted-like dehydrogenation paths, both acetaldehyde
and acetate are produced in such a way as to avoid a variety of
intermediates, which is consistent with the experimental data obtained
from in situ FTIR spectroscopy. Our work shows that adsorbed OH on
the Pd electrode rather than Pd atoms is the active center for the
reactions; the dissociation of the C−H bond is facilitated by the
adsorption of an OH− anion on the surface, resulting in the formation
of water. Our calculations demonstrate that water dissociation rather than H desorption is the main channel through which
electrical current is generated on the Pd electrode. The effects of the inner Helmholtz layer and the outer Helmholtz layer are
decoupled, with only the inner Helmholtz layer being found to have a significant impact on the mechanistics of the reaction. Our
results provide atomic level insight into the significance of the simplified electrical double layer in electrocatalysis, which may be
of general importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 oC and 60 oC, using variable temperature electrochemical in-situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 oC to 60 oC facilitates both ethanol dissociation to CO(a) and their further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found on modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in-situ FTIR and DFT study, provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional theory calculations were carried out to examine the mechanism of ethanol decomposition on the Rh(211) surface. We found that there are two possible decomposition pathways: (1) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(3)CO -> CH(3) + CO -> CH(2) + CO -> CH + CO -> C + CO and (2) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(2)COH -> CHCOH -> CHCO -> CH + CO -> C + CO. Both pathways have a common intermediate of CH(3)COH, and the key step is the formation of CH(3)CHOH species. According to our calculations, the mechanism of ethanol decomposition on Rh(211) is totally different from that on Rh(111): the reaction proceeds via CH(3)COH rather than an oxametallacycle species (-CH(2)CH(2)O- for Rh( 111)), which implies that the decomposition process is structure sensitive. Further analyses on electronic structures revealed that the preference of the initial C(alpha)-H path is mainly due to the significant reduction of d-electron energy in the presence of the transition state (TS) complex, which may stabilize the TS-surface system. The present work first provides a clear picture for ethanol decomposition on stepped Rh(211), which is an important first step to completely understand the more complicated reactions, like ethanol steam reforming and electrooxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ammoxidation of ethanol is investigated as a renewable process for the production of acetonitrile from a bio-feedstock. Palladium catalysts are shown to be active and very selective (>99%) to this reaction at moderate to low temperatures (150-240 °C), with acetonitrile yields considered a function of Pd morphology. Further investigations reveal that the stability of these catalysts is influenced by an unselective product, and that any deactivation observed is reversible. Interpretation of this deactivation allows operating conditions to be defined for the stable, high yielding production of acetonitrile from ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deacidification of vegetable oils can be performed using liquid-liquid extraction as an alternative method to the classical chemical and physical refining processes. This paper reports experimental data for systems containing refined babassu oil, lauric acid, ethanol, and water at 303.2 K with different water mass fractions in the alcoholic solvent (0, 0.0557, 0.1045, 0.2029, and 0.2972). The dilution of solvent with water reduced the distribution coefficient values, which indicates a reduction in the loss of neutral oil. The experimental data were used to adjust the NRTL equation parameters. The global deviation between the observed and the estimated compositions was 0.0085, indicating that the model can accurately predict the behavior of the compounds at different levels of solvent hydration. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soybean oil can be deacidified by liquid-liquid extraction with ethanol. In the present paper, the liquid-liquid equilibria of systems composed of refined soybean oil, commercial linoleic acid, ethanol and water were investigated at 298.2 K. The experimental data set obtained from the present study (at 298.2 K) and the results of Mohsen-Nia et al. [1] (at 303.2 K) and Rodrigues et al. [2] (at 323.2 K) were correlated by applying the non-random two liquid (NRTL) model. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. Among variables, the water content of the solvent had the strongest effect on the solubility of the components. The maximum deviation and average variance between the experimental and calculated compositions were 1.60% and 0.89%, indicating that the model could accurately predict the behavior of the compounds at different temperatures and degrees of hydration. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different hydrogen bonded clusters involving phenol and ethanol are studied theoretically using MP2/aug-cc-pVDZ. Nine different 1: 1 clusters are obtained and analyzed according to their stability and spectroscopic properties. Different isomeric forms of ethanol are considered. Attention is also devoted to the spectral shift of the characteristic pi -> pi* transition of phenol. Using TDHF, CIS, CIS(D) and TDB3LYP in aug-cc-pVDZ basis set, all results agree that a red shift is obtained when phenol is the hydrogen donor and a blue shift is obtained in the opposite case. These results are used to rationalize the red shift observed for phenol in liquid ethanol. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman activities and degrees of depolarization are reported for 14 complexes involving methanol, ethanol and water using the MP2/aug-cc-pVDZ model. For ethanol both trans and gauche isomers are considered. The red-shifts of the OH stretching and the blue shifts of the bending tau(CO-OH) mode were analyzed for the proton-donor molecules upon hydrogen bond. The shift of the nu(CO) stretching mode of the alcohol molecules are also analyzed and found to be specific giving characterization of the amphoteric relation, being positive for the proton-acceptor and negative for the proton-donor molecule. (c) 2008 Elsevier B.V. All rights reserved.