959 resultados para Enzymes immobilisées


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum causes the most severe form of malaria that is fatal in many cases. Emergence of drug resistant strains of P. falciparum requires that new drug targets be-identified. This review considers in detail enzymes of the glycolytic pathway, purine salvage pathway, pyrimidine biosynthesis and proteases involved in catabolism of haemoglobin. Structural features of P. falciparum triosephosphate isomerase which could be exploited for parasite specific drug development have been highlighted. Utility of P. falciparum hypoxanthine-guanine-phosphoribosyltransferase, adenylosuccinate synthase, dihydroorotate dehydrogenase, thymidylate synthase-dihydrofolate reductase, cysteine and aspartic proteases have been elaborated in detail. The review also briefly touches upon other potential targets in P. falciparum

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfotransferases (SULTs) and UDP-glucuronosyltransferases (UGTs) are important detoxification enzymes and they contribute to bioavailability and elimination of many drugs. SULT1A3 is an extrahepatic enzyme responsible for the sulfonation of dopamine, which is often used as its probe substrate. A new method for analyzing dopamine-3-O-sulfate and dopamine-4-O-sulfate by high-performance liquid chromatography was developed and the enzyme kinetic parameters for their formation were determined using purified recombinant human SULT1A3. The results show that SULT1A3 strongly favors the 3-hydroxy group of dopamine, which indicates that it may be the major enzyme responsible for the difference between the circulating levels of dopamine sulfates in human blood. All 19 known human UGTs were expressed as recombinant enzymes in baculovirus infected insect cells and their activities toward dopamine and estradiol were studied. UGT1A10 was identified as the only UGT capable of dopamine glucuronidation at a substantial level. The results were supported by studies with human intestinal and liver microsomes. The affinity was low indicating that UGT1A10 is not an important enzyme in dopamine metabolism in vivo. Despite the low affinity, dopamine is a potential new probe substrate for UGT1A10 due to its selectivity. Dopamine was used to study the importance of phenylalanines 90 and 93 in UGT1A10. The results revealed distinct effects that are dependent on differences in the size of the side chain and on the differences in their position within the protein. Examination of twelve mutants revealed lower activity in all of them. However, the enzyme kinetic studies of four mutants showed that their affinities were similar to that of UGT1A10 suggesting that F90 and F93 are not directly involved in dopamine binding in the active site. The glucuronidation of β-estradiol and epiestradiol (α-estradiol) was studied to elucidate how the orientation of the 17-OH group affects conjugation at the 3-OH or the 17-OH of either diastereomer. The results show that there are clear differences in the regio- and stereoselectivities of UGTs. The most active isoforms were UGT1A10 and UGT2B7 demonstrating opposite regioselectivity. The stereoselectivities of UGT2Bs were more complex than those of UGT1As. The amino acid sequences of the human UGTs 1A9 and 1A10 are 93% identical, yet there are large differences in their activity and substrate selectivity. Several mutants were constructed to identify the residues responsible for the activity differences. The results revealed that the residues between Leu86 and Tyr176 of UGT1A9 determine the differences between UGT1A9 and UGT1A10. Phe117 of UGT1A9 participated in 1-naphthol binding and the residues at positions 152 and 169 contributed to the higher glucuronidation rates of UGT1A10. In summary, the results emphasize that the substrate selectivities, including regio- and stereoselectivities, of UGTs are complex and they are controlled by many amino acids rather than one critical residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme nicotinamide amidase (nicotinamide amidohydrolase) was purified 57-fold from Aspergillus niger. The purified preparation was specific towards its substrate nicotinamide and did not deamidate NADP, NAD, NMN, N′-methyl nicotinamide, asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide. The asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide.vThe optimum pH was found to be 7.5. Temperature optimum was 40°. It had a Km value of 6.504 · 10−4 M towards nicotinamide. The enzyme exhibited Mg2+ ion requirement for its optimum activity. NAD-glycohydrolase (EC 3.2.2.5) was purified 109-fold from the mold. A. niger. The enzyme preparation was active only towards NAD and NADP and did not attack NMN, N′-methylnicotinamide and NADH. The Km value for NAD was found to be 7.693 · 10−6 M. The enzyme did not require any metal ion for its activity. It is suggested that A. niger will serve a better source for a large scale preparation of NAD-glycohydrolase than the Neurospora mold. The biological role of both NAD-glycohydrolase and nicotinamide amidase in the regulation of cellular NAD level has been discussed. It is, further, observed that NAD did not exert its feedback control on nicotinamide amidase at least in A. niger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

VITAMIN A is stored in rat liver largely as its ester with small amounts of the alcohol, but is transported in the normal circulating blood in the latter form1. Although it was generally believed that the alcohol form is the more physiological state of the vitamin, since the work of Dowling and Wald2, it is being recognized that vitamin A acid and not the alcohol may be nearer to the 'active vitamin A'. If this were to be so, it would be important to demonstrate that a mechanism exists in the rat for the production of vitamin A acid from vitamin A alcohol through the intermediate, the aldehyde. Regarding the formation of the aldehyde, it has been well established that the alcohol dehydrogenase can bring about the conversion of vitamin A alcohol to retinene3. The presence of an enzyme in rat and pig liver catalysing the oxidation of retinene1 and retinene2 to the corresponding acids has been demonstrated in the present work and the partially purified enzyme preparation shown to be completely devoid of alcohol dehydrogenase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

VITAMIN A and cholesterol esters have been shown to undergo extensive hydrolysis in the lumen of the small intestine during the process of absorption; they are re-esterified to appear in the lymph mostly as esters1,2. However, the vitamin A esters of the lymph, blood and liver of the rat are formed by long-chain fatty acids3 and in the normal rat liver, probably as palmitates4. On the other hand, cholesterol esters are usually made up of poly-unsaturated fatty acids in the lymph and blood of rats5. For the absorption of the two lipid materials, the enzymes of the pancreas have been largely implicated, while not much attention has been paid to the possible role of the mucosal enzymes. From the behaviour of the mucosal enzymes, as presented here, it appears that probably these enzymes play a more important part in the re-esterification of the two lipid materials during their absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral administration of pulegone (400 mg/kg) to rats once daily for five days caused significant decreases in the levels of liver microsomal cytochrome P-450 and heme. Cytochrome b5 and NAD(P)H-cytochrome c-reductase activities were not affected. Massive hepatotoxicy accompanied by an increase in serum glutamate pyruvate transaminase (SGPT) and a decrease in glucose-6-phosphatase were observed upon treatment with pulegone. A significant decrease in aminopyrine N-demethylase was also noticed after pulegone administration. Menthone or carvone (600 mg/kg), compounds related to pulegone, when administered orally did not cause any decrease in cytochrome P-450 levels. The hepatotoxic effects of pulegone were both dose and time dependent. Pretreatment of rats with phenobarbital (PB) or diethylmaleate (DEM) potentiated the hepatotoxicity caused by pulegone, whereas, pretreatment with 3-methylcholanthrene (3-MC) or piperonyl butoxide protected from it. It appears that a PB induced cytochrome P-450 catalysed reactive metabolite(s) may be responsible for the hepatotoxicity caused by pulegone.