958 resultados para Environmentally Responsive Design
Resumo:
Solar Cities Congress 2008 “Energising Sustainable Communities – Options for Our Future” THEME 3: Climate Change. Impact on Society and Culture. Sub Theme: planning and implementing holistic strategies for sustainable transport Abstract Promoting the use of cycling as an environmentally and socially sustainable form of transport. We need to reduce carbon emissions. We need to reduce fuel consumption. We need to reduce pollution. We need to reduce traffic congestion. As obesity levels and associated health problems in the developed nations continue to increase we need to adopt a healthier lifestyle. Few if any would argue with these statements. In fact many would consider these problems to be amongst the most urgent that our society faces. What if we had a vehicle that uses no fossil fuel to power it, creates no pollution, takes up far less space on the roads and promotes an active, healthy lifestyle. What if this machine would have energy efficiency levels 50 times greater than the car? This is a solution that is here, now and ready to go and many of us already own one. It is the humble bicycle. Although bicycle sales in Australia now outnumber car sales, bicycle use as a form of transport (as opposed to recreation) only constitutes around 3% to 4% of all trips. So, why are bicycles the forgotten form of transport if they promise to deliver the benefits that I have just outlined? This paper examines the underlying reasons for the relatively low use of bicycles as a means of transport. It identifies the areas of greatest potential for encouraging the use of the world’s most efficient form of transport. Tim Williams - May 2007
Resumo:
Decisions made in the earliest stage of architectural design have the greatest impact on the construction, lifecycle cost and environmental footprint of buildings. Yet the building services, one of the largest contributors to cost, complexity, and environmental impact, are rarely considered as an influence on the design at this crucial stage. In order for efficient and environmentally sensitive built environment outcomes to be achieved, a closer collaboration between architects and services engineers is required at the outset of projects. However, in practice, there are a variety of obstacles impeding this transition towards an integrated design approach. This paper firstly presents a critical review of the existing barriers to multidisciplinary design. It then examines current examples of best practice in the building industry to highlight the collaborative strategies being employed and their benefits to the design process. Finally, it discusses a case study project to identify directions for further research.
Resumo:
My perspective on the problems associated with building in bushfire prone landscapes comes from 12 years of study of the biophysical and cultural landscapes in the Great Southern Region of WA which resulted in the design and construction of the ‘Hhouse’ at Bremer Bay. The house was developed using a ‘ground up’ approach whereby I conducted a topographical survey and worked with a local botanist and a bushfire risk consultant to ascertain the level of threat that fire presented to this particular site. My intention from the outset however, was not to design a bushfire resistant house per se, but to develop a design which would place the owners in close proximity to the highly biodiverse heath vegetation of the site. I was also seeking a means—through architectural design—of linking the patterns of usage of the house with other site specific conditions related to the prevailing winds, solar orientation and seasonal change.
Resumo:
Stormwater has been recognised as one of the main culprits of aquatic ecosystem pollution and as a significant threat to the goal of ecological sustainable development. Water sensitive urban design is one of the key responses to the need to better manage urban stormwater runoff, the objectives of which go beyond rapid and efficient conveyance. Underpinned by the concepts of sustainable urban development, water sensitive urban design has proven to be an efficient and environmentally-friendly approach to urban stormwater management, with the necessary technical know-how and skills already available. However, large-scale implementation of water sensitive urban design is still lacking in Australia due to significant impediments and negative perceptions. Identification of the issues, barriers and drivers that affect sustainability outcomes of urban stormwater management is one of the first steps towards encouraging the wide-scale uptake of water sensitive urban design features which integrate sustainable urban stormwater management. This chapter investigates key water sensitive urban design perceptions, drivers and barriers in order to improve sustainable urban stormwater management efforts.
Resumo:
Effective strategies for the design of effi cient and environmentally sensitive buildings require a close collaboration between architects and engineers in the design of the building shell and environmental control systems at the outset of projects. However, it is often not practical for engineers to be involved early on in the design process. It is therefore essential that architects be able to perform preliminary energy analyses to evaluate their proposed designs prior to the major building characteristics becoming fi xed. Subsequently, a need exists for a simplifi ed energy design tool for architects. This paper discusses the limitations of existing analysis software in supporting early design explorations and proposes a framework for the development of a tool that provides decision support by permitting architects to quickly assess the performance of design alternatives.
Resumo:
The Centre for Subtropical Design at QUT, in partnership with the Queensland Government and Brisbane City Council, conducts research focused on 'best practice' outcomes for higher density urban living environments in the subtropics through the study of typical urban residential typologies, and urban design. The aim of the research is to inform and illustrate best practice subtropical design principles to policy makers and development industry professionals to stimulate climate-responsive outcomes. The Centre for Subtropical Design recently sought project-specific funding from the Queensland Department of Infrastructure and Planning (DIP) to investigate residential typologies for sustainable subtropical urban communities, based on transit orientated development principles and outcomes for areas around public transport nodes. A development site within the Fitzgibbon Urban Development Area, and close to a rail and bsu transport corridor, provided a case study location for this project. Four design-led multi-disciplinary creative teams participated in a Design Charrette and have produced concept drawings and propositions on a range of options, or prototypes. Analysis of selected prototypes has been undertaken to determine their environmental, economic and social performance. This Project Report discusses the scope of the project funded by DIP in terms of activities undertaken to date, and deliverables achieved. A subsequent Research Report will discuss the detailed findings of the analysis.
Resumo:
A key concern in the field of contemporary fashion/textiles design is the emergence of ‘fast fashion’: best explained as "buy it Friday, wear it Saturday and throw it away on Sunday" (O'Loughlin, 2007). In this contemporary retail atmosphere of “pile it high: sell it cheap” and “quick to market”, even designer goods have achieved a throwaway status. This modern culture of consumerism is the antithesis of sustainability and is proving a dilemma surrounding sustainable practice for designers and producers in the disciplines (de Blas, 2010). Design researchers including those in textiles/fashion have begun to explore what is a key question in the 21st century in order to create a vision and reason for their disciplines: Can products be designed to have added value to the consumer and hence contribute to a more sustainable industry? Fashion Textiles Design has much to answer for in contributing to the problems of unsustainable practices on a global scale in design, production and waste. However, designers within this field also have great potential to contribute to practical ‘real world’ solutions. ----- ----- This paper provides an overview of some of the design and technological developments from the fashion/textiles industry, endorsing a model where designers and technicians use their transferrable skills for wellbeing rather than desire. Smart materials in the form of responsive and adaptive fibres and fabrics combined with electro active devices, and ICT are increasingly shaping many aspects of society particularly in the leisure industry and interactive consumer products are ever more visible in healthcare. Combinations of biocompatible delivery devices with bio sensing elements can create analyse, sense and actuate early warning and monitoring systems which can be linked to data logging and patient records via intelligent networks. Patient sympathetic, ‘smart’ fashion/textiles applications based on interdisciplinary expertise utilising textiles design and technology is emerging. An analysis of a series of case studies demonstrates the potential of fashion textiles design practitioners to exploit the concept of value adding through technological garment and textiles applications and enhancement for health and wellbeing and in doing so contribute to a more sustainable future fashion/textiles design industry.
Resumo:
The exchange pavilion offers a dialogue between two Expositions: 1998 in Brisbane and 2010 in Shanghai; and a chance to examine the impact that climate change will have on urban best practice outcomes in cities of the future. The Exchange exhibits the proposition that environmentally sustainable buildings need to interact responsively with a range of technical innovations to enable communities (and hence cities) to control and better manage their immediate environment. The 'Exchange' pavilion is a design experiment that integrates 3 key research elements: * An interactive digital exchange * A living green system wall (vertical and temporal) * A public urban star (horizontal and spatial) The proposition argues that the environmentally sustainability of any city is reliant on harnessing the full spectrum of intellectual and creative capital of the winder community (from universities to Government bodies to citizens) - a true knowledge city.
Resumo:
During an intensive design-led workshop multidisciplinary design teams examined options for a sustainable multi-residential tower on an inner urban site in Brisbane (Australia). The main aim was to demonstrate the key principles of daylight to every habitable room and cross-ventilation to every apartment in the subtropical climate while responding to acceptable yield and price points. The four conceptual design proposals demonstrated a wide range of outcomes, with buildings ranging from 15 to 30 storeys. Daylight Factor (DF), view to the outside, and the avoidance of direct sunlight were the only quantitative and qualitative performance metrics used to implement daylighting to the proposed buildings during the charrette. This paper further assesses the daylighting performance of the four conceptual designs by utilizing Climate-based daylight modeling (CBDM), specifically Daylight Autonomy (DA) and Useful Daylight Illuminance (UDI). Results show that UDI 100-2000lux calculations provide more useful information on the daylighting design than DF. The percentage of the space with a UDI <100-2000lux larger than 50% ranged from 77% to 86% of the time for active occupant behaviour (occupancy from 6am to 6pm). The paper also highlights the architectural features that mostly affect daylighting design in subtropical climates.
Resumo:
Stormwater has been recognised as one of the main culprits of aquatic ecosystem pollution and as a significant threat to the goal of ecological sustainable development. Water sensitive urban design is one of the key responses to the need to better manage urban stormwater runoff, the objectives of which go beyond rapid and efficient conveyance. Underpinned by the concepts of sustainable urban development, water sensitive urban design has proven to be an efficient and environmentally-friendly approach to urban stormwater management, with the necessary technical know-how and skills already available. However, large-scale implementation of water sensitive urban design is still lacking in Australia due to significant impediments and negative perceptions. Identification of the issues, barriers and drivers that affect sustainability outcomes of urban stormwater management is one of the first steps towards encouraging the wide-scale uptake of water sensitive urban design features which integrate sustainable urban stormwater management. This chapter investigates key water sensitive urban design perceptions, drivers and barriers in order to improve sustainable urban stormwater management efforts.
Resumo:
Architectural education is beginning to recognise the potential of a more intensive relationship between the tasks of designing and building (Erdman et al., 2002) within a work integrated learning environment. The Bouncing Back Project, began after the Queensland, Australia floods in January 2011, and has organically grown through a number of architectural student exhibitions, initially displaying flood responsive designs. In September 2011, 10 Queensland University of Technology architecture students travelled to Sydney to work together in helping to construct a shelter in the Emergency Shelter Exhibition, at Customs House in Circular Quay. The construction and making of the shelter, was filmed. This film documents the student experience, of making, working with industry professionals, community engagement and it reveals how this activity promotes informal work integrated learning in a real world context.
Resumo:
Flexible information exchange is critical to successful design-analysis integration, but current top-down, standards-based and model-oriented strategies impose restrictions that contradicts this flexibility. In this article we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks. We then discuss how a shared mapping process that is flexible and user friendly supports non-programmers in creating these custom connections. Adopting a services-oriented system architecture, we propose a web-based platform that enables data, semantics and models to be shared on the fly. We then discuss potential challenges and opportunities for its development as a flexible, visual, collaborative, scalable and open system.
Resumo:
Flexible information exchange is critical to successful design integration, but current top-down, standards-based and model-oriented strategies impose restrictions that are contradictory to this flexibility. In this paper we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks. Adopting a services-oriented system architecture, we propose a web-based platform that enables data, semantics and models to be shared on the fly. We discuss potential challenges and opportunities for the development thereof as a flexible, visual, collaborative, scalable and open system.
Resumo:
Daylight devices are important components of any climate responsive façade system. But, the evolution of parametric CAD systems and digital fabrication has had an impact on architectural form so that regular forms are shifting to complex geometries. Architectural and engineering integration of daylight devices in envelopes with complex geometries is a challenge in terms of design and performance evaluation. The purpose of this paper is to assess daylight performance of a building with a climatic responsive envelope with complex geometry that integrates shading devices in the façade. The case study is based on the Esplanade buildings in Singapore. Climate-based day-light metrics such as Daylight Availability and Useful Daylight Illuminance are used. DIVA (daylight simulation), and Grasshopper (parametric analysis) plug-ins for Rhinoceros have been employed to examine the range of performance possibilities. Parameters such as dimension, inclination of the device, projected shadows and shape have been changed in order to maximize daylight availability and Useful Daylight Illuminance while minimizing glare probability. While orientation did not have a great impact on the results, aperture of the shading devices did, showing that shading devices with a projection of 1.75 m to 2.00 m performed best, achieving target lighting levels without issues of glare.
Resumo:
As the Latino population in the United States grows, it will become increasingly important for undergraduate students in environmental design and related disciplines to become more culturally responsive and learn how to understand and address challenges faced by population groups, such as Latino youth. To this end, we involved environmental design undergraduate students at the University of Colorado in a service-learning class to mentor Latino youth in the creation of multimedia narratives using photovoice and digital storytelling techniques. The introduction of technology was used as a bridge between the two groups and to provide a platform for the Latino youth to reveal their community experiences. Based on focus group results, we describe the impact on the undergraduate students and provide recommendations for similar programs that can promote cultural responsiveness through the use of digital technology and prepare environmental design students to work successfully in increasingly diverse communities.