955 resultados para Engineering structure


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses of up to several mm underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior in metallic specimens with one or more stripes which define the compressive residual stress area induced by the Laser Shock Peening treatment. The process was applied as crack retardation stripes perpendicular to the crack propagation direction with the object of slowing down the crack when approaching the peened stripes. The finite element method has been applied to simulate the redistribution of stresses in a cracked model when it is subjected to a tension load and to a compressive residual stress field, and to evaluate the Stress Intensity Factor (SIF) in this condition. Finally, the Afgrow software is used to predict the crack growth behavior of the component following the Laser Shock Peening treatment and to detect the improvement in the fatigue life comparing it to the baseline specimen. An educational internship at the “Research & Technologies Germany – Hamburg” department of AIRBUS helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: •To up to date Literature Survey related to “Laser Shock Peening in Metallic Structures” •To validate the FE model developed against experimental measurements at coupon level •To develop design of crack growth slowdown in Centered Cracked Tension specimens based on residual stress engineering approach using laser peened strip transversal to the crack path •To evaluate the Stress Intensity Factor values for Centered Cracked Tension specimens after the Laser Shock Peening treatment via Finite Element Analysis •To predict the crack growth behavior in Centered Cracked Tension specimens using as input the SIF values evaluated with the FE simulations •To validate the results by means of experimental tests

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cognitive linguistics have conscientiously pointed out the pervasiveness of conceptual mappings, particularly as conceptual blending and integration, that underlie language and that are unconsciously used in everyday speech (Fauconnier 1997, Fauconnier & Turner 2002; Rohrer 2007; Grady, Oakley & Coulson 1999). Moreover, as a further development of this work, there is a growing interest in research devoted to the conceptual mappings that make up specialized technical disciplines. Lakoff & Núñez 2000, for example, have produced a major breakthrough on the understanding of concepts in mathematics, through conceptual metaphor and as a result not of purely abstract concepts but rather of embodiment. On the engineering and architecture front, analyses on the use of metaphor, blending and categorization in English and Spanish have likewise appeared in recent times (Úbeda 2001, Roldán 1999, Caballero 2003a, 2003b, Roldán & Ubeda 2006, Roldán & Protasenia 2007). The present paper seeks to show a number of significant conceptual mappings underlying the language of architecture and civil engineering that seem to shape the way engineers and architects communicate. In order to work with a significant segment of linguistic expressions in this field, a corpus taken from a widely used technical Spanish engineering journal article was collected and analysed. The examination of the data obtained indicates that many tokens make a direct reference to therapeutic conceptual mappings, highlighting medical domains such as diagnosing,treating and curing. Hence, the paper illustrates how this notion is instantiated by the corresponding bodily conceptual integration. In addition, we wish to underline the function of visual metaphors in the world of modern architecture by evoking parts of human or animal anatomy, and how this is visibly noticeable in contemporary buildings and public works structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problems being addressed involve the dynamic interaction of solids (structure and foundation) with a liquid (water). Various numerical procedures are reviewed and employed to solve the problem of establishing the expected response of a structure subjected to seismic excitations while duly accounting for those interactions. The methodology is applied to the analysis of dams, lock gates, and large storage tanks, incorporating in some cases a comparison with the results produced by means of simplified analytical procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The finite element and boundary element methods are employed in this study to investigate the sound radiation characteristics of a box-type structure. It has been shown [T.R. Lin, J. Pan, Vibration characteristics of a box-type structure, Journal of Vibration and Acoustics, Transactions of ASME 131 (2009) 031004-1–031004-9] that modes of natural vibration of a box-type structure can be classified into six groups according to the symmetry properties of the three panel pairs forming the box. In this paper, we demonstrate that such properties also reveal information about sound radiation effectiveness of each group of modes. The changes of radiation efficiencies and directivity patterns with the wavenumber ratio (the ratio between the acoustic and the plate bending wavenumbers) are examined for typical modes from each group. Similar characteristics of modal radiation efficiencies between a box structure and a corresponding simply supported panel are observed. The change of sound radiation patterns as a function of the wavenumber ratio is also illustrated. It is found that the sound radiation directivity of each box mode can be correlated to that of elementary sound sources (monopole, dipole, etc.) at frequencies well below the critical frequency of the plates of the box. The sound radiation pattern on the box surface also closely related to the vibration amplitude distribution of the box structure at frequencies above the critical frequency. In the medium frequency range, the radiated sound field is dominated by the edge vibration pattern of the box. The radiation efficiency of all box modes reaches a peak at frequencies above the critical frequency, and gradually approaches unity at higher frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a formulation of image-based visual servoing (IBVS) for a spherical camera where coordinates are parameterized in terms of colatitude and longitude: IBVSSph. The image Jacobian is derived and simulation results are presented for canonical rotational, translational as well as general motion. Problems with large rotations that affect the planar perspective form of IBVS are not present on the sphere, whereas the desirable robustness properties of IBVS are shown to be retained. We also describe a structure from motion (SfM) system based on camera-centric spherical coordinates and show how a recursive estimator can be used to recover structure. The spherical formulations for IBVS and SfM are particularly suitable for platforms, such as aerial and underwater robots, that move in SE(3).