991 resultados para Engineering Day


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Annual Biochemical Engineering Symposium Series started in 1970 when Professors Larry E. Erickson (Kansas State University) and Peter J. Reilly (then with University of Nebraska-Lincoln) got together in Manhattan, KS along with their students for a half-day powwow and technical presentation by their students. Ever since then, it has been a forum for Biochemical Engineering students in the heartland of USA to present their research to their colleagues in the form of talks and posters. The institutions actively involved with this annual symposium include Colorado State University, Kansas State University, Iowa State University, University of Colorado, University of Kansas, University of Missouri-Columbia, and University of Oklahoma. The University of lowa and University of Nebraska-Lincoln have also participated in the conference in recent years. The host institutions for the different symposia have been: Kansas State University (1, 3, 5, 9, 12, 16, 20), Iowa State University (6, 7, 10, 13, 17, 22), University of Missouri-Columbia (8, 14, 19, 25), Colorado State University (II, 15, 21), University of Colorado (18, 24), University of Nebraska-Lincoln (2, 4), University of Oklahoma (23). The next symposium will be held at Kansas State University. Proceedings of the Symposium are edited by faculty of the host institution and include manuscripts written and submitted by the presenters (students). These often include works-in-progress and final publication usually takes place in refereed journals. ContentsPatrick C. Gilcrease and Vincent G. Murphy, Colorado State University. Use of 2,4,6-Trinitrotoluene (TNT) As A Nitrogen Source By A Pseudomonas florescens Species Under Aerobic Conditions. Marulidharan Narayanan, Lawrence C. Davis, and Larry E. Erickson, Kansas State University. Biodegradation Studies of Chlorinated Organic Pollutants in a Chamber in the Presence of Alfalfa Plants. S.K. Santharam, L.E. Erickson, and L.T. Fan, Kansas State University.Surfactant-Enhanced Remediation of a Non-Aqueous Phase Contaminant in Soil. Barry Vant-Hull, Larry Gold, and Robert H. Davis, University of Colorado.The Binding of T7 RNA Polymerase to Double-Stranded RNA. Jeffrey A. Kern and Robert H. Davis, University of Colorado.Improvement of RNA Transcription Yield Using a Fed-Batch Enzyme Reactor. G. Szakacs, M. Pecs, J. Sipocz, I. Kaszas, S.R. Deecker, J.C. Linden, R.P. Tengerdy, Colorado State University.Bioprocessing of Sweet Sorghum With In Situ Produced Enzymes. Brad Forlow and Matthias Nollert, University of Oklahoma.The Effect of Shear Stress ad P-selectin Site Density on the Rolling Velocity of White Blood Cells. Martin C. Heller and Theodore W. Randolph, University of Colorado.The Effects of Plyethylene Glycol and Dextran on the Lyophilization of Human Hemoglobin. LaToya S. Jones and Theodore W. Randolph, University of Colorado.Purification of Recombinant Hepatitis B Vaccine: Effect of Virus/Surfactant Interactions. Ching-Yuan Lee, Michael G. Sportiello, Stephen Cape, Sean Ferree, Paul Todd, Craig E. Kundrot, and Cindy Barnes, University of Colorado.Application of Osmotic Dewatering to the Crystallization of Oligonucleotides for Crystallography. Xueou Deng, L.E. Erickson, and D.Y.C. Fung, Kansas State University.Production of Protein-Rich Beverages from Cheese Whey and Soybean by rapid Hydration Hydrothermal Cooking. Pedro M. Coutinho, Michael K. Dowd, and Peter J. Reilly, Iowa State University.Automated Docking of Glucoamylase Substrates and Inhibitors. J. Johansson and R.K. Bajpai, University of Missouri.Adsorption of Albumin on Polymeric Microporous Membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the historical evolution of, from its inception, to the present day, within the changing context of EHEA and linked to professional competences. The research methodology, although it is mainly a historical document review, expert opinions on university educational planning of university education of forestry engineering in Spain are also included. The results show the evolution of centralized planning, based on technical knowledge transmission to an approach based on competences (technical, contextual and behavioral) focusing on learning for improving employability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes samples of menus, suggestions for planning meals, grocery shopping, ways of saving time and money, description of household appliances, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sponsored by National Aeronautics and Space Administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a greater emphasis over the past few years of encouraging high school students to take up engineering as a career. This is due to a greater need for engineers in society, particularly in areas that are suffering a skills shortage. Both the engineering profession and universities across Australia have moved to address this shortage, with a proliferation of engineering outreach activities and programs the result. The Engineering Link Group (TELG) began the Engineering Link Project (ELP) over a decade ago with a focus on helping motivated high school students make an informed choice about engineering as a career. It also aimed at encouraging more high school students to study maths and science at high school. From the start the ELP was designed so that the students became engineers, rather than just hear from or watch engineers. Real working engineers pose problems to groups of students for them solve over the course of a day. In this way, students experience what it is like to be an engineer. It has been found that the project does help high school students make more informed career choices about engineering. The project also gave the students real life and practical reasons for studying sciences and mathematics at high school. © 2005, Australasian Association for Engineering Education

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a strong move towards entrepreneurial education in high schools and at universities over the past few years. This has been echoed by a call from state governments around Australia to promote enterprise thinking and education in high schools. It also parallels the push within engineering to learn across the traditional boundaries , particularly between engineering and business. To meet this call, The Engineering Link Group (TELG) developed the Future Engineers Australia Management Project (FEAMP) in 2003. The project is based around Enterprise Education, and was inspired by the Smallpeice Year 12 Engineering Management course in the UK. The idea was to take high school students in years 11 and 12 and turn them into ‘engineering entrepreneurs’. This paper presents the design, development and evaluation of FEAMP as a five day residential course for year 11 and 12 students who want to learn more about being entrepreneurs and managers. It is a hands-on activity where the students invent, develop and sell an engineering concept to venture capitalists and ultimately to customers at a trade fair. It has been run successfully for two years, going from strength to strength. © 2005, Australasian Association for Engineering Education

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ε-caprolactone) (PCL) fibers produced by wet spinning from solutions in acetone under low-shear (gravity-flow) conditions resulted in fiber strength of 8 MPa and stiffness of 0.08 Gpa. Cold drawing to an extension of 500% resulted in an increase in fiber strength to 43 MPa and stiffness to 0.3 GPa. The growth rate of human umbilical vein endothelial cells (HUVECs) (seeded at a density of 5 × 104 cells/mL) on as-spun fibers was consistently lower than that measured on tissue culture plastic (TCP) beyond day 2. Cell proliferation was similar on gelatin-coated fibers and TCP over 7 days and higher by a factor of 1.9 on 500% cold-drawn PCL fibers relative to TCP up to 4 days. Cell growth on PCL fibers exceeded that on Dacron monofilament by at least a factor of 3.7 at 9 days. Scanning electron microscopy revealed formation of a cell layer on samples of cold-drawn and gelatin-coated fibers after 24 hours in culture. Similar levels of ICAM-1 expression by HUVECs attached to PCL fibers and TCP were measured using RT-PCR and flow cytometry, indicative of low levels of immune activation. Retention of a specific function of HUVECs attached to PCL fibers was demonstrated by measuring their immune response to lipopolysaccharide. Levels of ICAM-1 expression increased by approximately 11% in cells attached to PCL fibers and TCP. The high fiber compliance, favorable endothelial cell proliferation rates, and retention of an important immune response of attached HUVECS support the use of gravity spun PCL fibers for three-dimensional scaffold production in vascular tissue engineering. © Mary Ann Liebert, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper begins with the argument that within modern-day society, engineering has shifted from being the scientific and technical mainstay of industrial, and more recently digital change to become the most vital driver of future advancement. In order to meet the inevitable challenges resulting from this role, the nature of engineering education is constantly evolving and as such engineering education has to change. The paper argues that what is needed is a fresh approach to engineering education – one that is sufficiently flexible so as to capture the fast-changing needs of engineering education as a discipline, whilst being pedagogically suitable for use with a range of engineering epistemologies. It provides an overview of a case study in which a new approach to engineering education has been developed and evaluated. The approach, which is based on the concept of scholarship, is described in detail. This is followed by a discussion of how the approach has been put into practice and evaluated. The paper concludes by arguing that within today's market-driven university world, the need for effective learning and teaching practice, based in good scholarship, is fundamental to student success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have demonstrated the successful production of titanium phosphate glass microspheres in the size range of ~10-200 µm using an inexpensive, efficient, easily scalable process and assessed their use in bone tissue engineering applications. Glasses of the following compositions were prepared by melt-quench techniques: 0.5P2O5-0.4CaO-(0.1 - x)Na2O-xTiO2, where x = 0.03, 0.05 and 0.07 mol fraction (denoted as Ti3, Ti5 and Ti7 respectively). Several characterization studies such as differential thermal analysis, degradation (performed using a novel time lapse imaging technique) and pH and ion release measurements revealed significant densification of the glass structure with increased incorporation of TiO2 in the glass from 3 to 5 mol.%, although further TiO2 incorporation up to 7 mol.% did not affect the glass structure to the same extent. Cell culture studies performed using MG63 cells over a 7-day period clearly showed the ability of the microspheres to provide a stable surface for cell attachment, growth and proliferation. Taken together, the results confirm that 5 mol.% TiO2 glass microspheres, on account of their relative ease of preparation and favourable biocompatibility, are worthy candidates for use as substrate materials in bone tissue engineering applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and characterisation of collagen:PCL composites for manufacture of tissue engineered skin substitutes and models are reported. Films having collagen:PCL (w/w) ratios of 1:4, 1:8 and 1:20 were prepared by impregnation of lyophilised collagen mats by PCL solutions followed by solvent evaporation. In vitro assays of collagen release and residual collagen content revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the composite that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. DSC analysis revealed the characteristic melting point of PCL at around 60°C and a tendency for the collagen component, at high loading, to impede crystallinity development within the PCL phase. The preparation of fibroblast/composite constructs was investigated using cell culture as a first stage in mimicking the dermal/epidermal structure of skin. Fibroblasts were found to attach and proliferate on all the composites investigated reaching a maximum of 2×105/cm2 on 1:20 collagen:PCL materials at day 8 with cell numbers declining thereafter. Keratinocyte growth rates were similar on all types of collagen:PCL materials investigated reaching a maximum of 6.6×104/cm2 at day 6. The results revealed that composite films of collagen and PCL are favourable substrates for growth of fibroblasts and keratinocytes and may find utility for skin repair. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ε-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. As-spun PCL fibres exhibited a mean strength and stiffness of 7.9 MPa and 0.1 GPa, respectively and a rough, porous surface morphology. Cold drawing to an extension of 500% resulted in increases in fibre strength (43 MPa) and stiffness (0.3 GPa) and development of an oriented, fibrillar surface texture. The proliferation rate of Swiss 3T3 mouse fibroblasts and C2C12 mouse myoblasts on as-spun, 500% cold-drawn and gelatin-modified PCL fibres was determined in cell culture to provide a basic measure of the biocompatibility of the fibres. Proliferation of both cell types was consistently higher on gelatin-coated fibres relative to as-spun fibres at time points below 7 days. Fibroblast growth rates on cold-drawn PCL fibres exceeded those on as-spun fibres but myoblast proliferation was similar on both substrates. After 1 day in culture, both cell types had spread and coalesced on the fibres to form a cell layer, which conformed closely to the underlying topography. The high fibre compliance combined with a potential for modifying the fibre surface chemistry with cell adhesion molecules and the surface architecture by cold drawing to enhance proliferation of fibroblasts and myoblasts, recommends further investigation of gravity-spun PCL fibres for 3-D scaffold production in soft tissue engineering. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integral variability of raw materials, lack of awareness and appreciation of the technologies for achieving quality control and lack of appreciation of the micro and macro environmental conditions that the structures will be subjected, makes modern day concreting a challenge. This also makes Designers and Engineers adhere more closely to prescriptive standards developed for relatively less aggressive environments. The data from exposure sites and real structures prove, categorically, that the prescriptive specifications are inadequate for chloride environments. In light of this shortcoming, a more pragmatic approach would be to adopt performance-based specifications which are familiar to industry in the form of specification for mechanical strength. A recently completed RILEM technical committee made significant advances in making such an approach feasible.
Furthering a performance-based specification requires establishment of reliable laboratory and on-site test methods, as well as easy to perform service-life models. This article highlights both laboratory and on-site test methods for chloride diffusivity/electrical resistivity and the relationship between these tests for a range of concretes. Further, a performance-based approach using an on-site diffusivity test is outlined that can provide an easier to apply/adopt practice for Engineers and asset managers for specifying/testing concrete structures.