727 resultados para Engenharia Metalurgica E De Materiais
Resumo:
Companies involved in kaolin mining and treatment represent an important area of industrial development in Brazil, significantly contribution to the worldwide production of such mineral. As a result, large volumes of kaolin residue are constantly generated and abandoned in the environment, negatively contributing to its preservation. In this scenario, the objective of the present study was to characterize the residue generated from kaolin mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Three compositions were prepared using kaolin residue contents of 10%, 20% and 30%. Samples were uniaxially pressed, fired at 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results showed that the residue basically consisted of kaolinite and successfully replaced raw kaolin in the preparation of ceramic title formulations without significantly affecting the properties of the fired material
Resumo:
The electric can be converted into thermal, luminous, electromagnetic, and also in mechanical energy. In this context the electric engines plays a fundamental role, specially that they work very below of its nominal capacity, with consequent decrease load density. In industrial environment, these characteristics of work of DC engines had also generated an extreme consumption of coal brushs and attack in the commutator reducing the useful life of the engine and increasing maintenance demand and cost. The general objective of the present work is to study the influence of the granulometry of the coal brush used in DC engines with the resistance to the consumption of the same ones, as well as in the performance presented by the commutator of the engine. Additionally, determining the measurable and not measurable profits when the brush used is adjusted to the application. The brushes had been produced by an industry of the sector and tested in industrial environment to evaluate their performance and consumption. Preliminary results evidence a substantial improvement in the performance of these brushes in function of its microstructure and the application in which it is used
Resumo:
The conversion of solar energy in electric with photo-voltaic cells has been carried through exclusively with devices of semiconducting junction. To put this situation comes moving for better in them last years, thanks to a new technology of production of known solar cells as Dye Solar Cell. This proposal aims at to develop a DSC having as dye lavonoides of the Capsicum frutescens (malagueta pepper). Front is considered to evaluate the photo-voltaic parameters varies it regions of the visible specter, as well as a good efficiency of conversion
Resumo:
The marble and granite waste come from the process of mining of those ornamental rocks for use in the building industry. Brazil is one of the largest producers of blocks or finished products of ornamental rocks, extracting about 5.2 tons / year. The largest national producers are the states of Espírito Santo, Minas Gerais and Bahia which account for 80% of the Brazilian production. However, the waste total amount during processing of these blocks reaches 40% of the total. The use of the waste produced by this industry in white ceramics could be a form of disposition, because these materials, are thrownasa mud directly at decantation ponds, wastelands or in rivers, without any treatment. The present work has as main purpose to study the influence that reject of the ornamental rocks on the physical and mechanical properties of white ceramics. X-Ray characterizations of raw materials by were performed X-Ray fluorescence, X-Ray diffraction, granulometric, thermogravimetric and thermodiferencial analysis, five formulations were made (0, 10, 20, 30, 40% in granite weight) wich were burned at three temperatures: 1100°C, 1150°C and 1200ºC with 60 minutes of sorling time. After sintering, the samples were submitted to different analyser absorption of water, linear retraction, apparent porosity, apparent specific mass, flexival stronght, and scanning were obtained microscopy. Compatible technological properties within the limits demanded for the production of porcelainized stoneware
Resumo:
The red ceramics and structural ceramics, as they are known, include ceramic materials made by blocks of seals and structures, bricks, tiles, smail flagstones manacles, rustic floors and ornamental materials. Their fabrication uses raw material such as clay and clay sites, with some content of impurity. It has good durability and mechanical strength to compression, low cost, making it one of the mainly used materials in civil engineering. The incorporation of many industrial activities residue to ceramic products is a technological alternative for reducing the environmental impact caused by its carefree disposal. This incorporation can promote chemical change and inertness of metals from residue, by fixation in the glassy phase of ceramic during the burning stage. The main aim of this project is to study the technical feasibility of the addition of ceramic oven ash into formulations of mass for structural ceramics. In this project two kinds of clay (plastic and non-plastic) were used, as well as the ash from firewood used in the process of burning of structural ceramics. A group of experiments was outlined, which permitted the evaluation of the influence of the burning cycle in different temperatures of the ash content in formulations for ceramic blocks through technological properties, mechanical behavior and microstructure. Five samples were processed of each one of the masses of plastic and non-plastic clay without addition of ash and with addition of ash on the percentages of 10 % and 20 %, for temperatures of 850 °C, 950 °C, 1050 °C and 1150 °C, obtained through sinterization process. Among the studied compositions, the one which presented best performance was the mass of clay with 10 % of ash, at temperature of 1150 °C, with the smallest absorption of water, the smallest apparent porosity, specific apparent mass a bit over the others and greatest mechanical resistance to flexion. The composition made confirmed the technical feasibility of the use of ash in the mass for structural ceramics with maintenance of its necessary characteristics for its purposes
Resumo:
Metal ceramic restorations matches aesthetic and strength, and in your making occurs an interface oxide layer, wetting resulting and atomic and ionic interactions resulting between metal, oxide and porcelain. However, frequent clinical fails occurs in this restoration type, because lost homogeneous deposition oxide layer and lost interface bond. Thus, in this study, thought depositate homogeneous oxide films above Ni-Cr samples surfaces polite previously, at plasma oxide environment. Six samples was oxided at 300 and 400ºC at one hour, and two samples was oxided in a comum chamber at 900ºC, and then were characterized: optical microscopic, electronic microscopic, micro hardness, and X ray difratometry. Colors stripes were observed at six samples plasma oxided and a grey surface those comum oxided, thus like: hardness increase, and several oxides from basic metals (Ni-Cr)
Resumo:
They are in this study the experimental results of the analysis of thermal performance of composite material made from a plant matrix of polyurethane derived from castor oil of kernel of mamona (COF) and loading of clay-mineral called vermiculite expanded. Bodies of evidence in the proportions in weight of 10%, 15% and 20% were made to determine the thermal properties: conductivity (k), diffusivity (ά) and heat capacity (C), for purposes of comparison, the measurements were also performed the properties of polyurethane of castor without charge and also the oil polyurethane (PU), both already used in thermal insulation. Plates of 0.25 meters of material analyzed were manufactured for use as insulation material in a chamber performance thermal coverage. Thermocouples were distributed on the surface of the cover, and inside the material inside the test chamber and this in turn was subjected to artificial heating, consisting of a bank of incandescent lamps of 3000 w. The results obtained with the composite materials were compared with data from similar tests conducted with the camera alone with: (a) of oil PU, (b) of COF (c) glass wool, (d ) of rock wool. The heat resistance tests were performed with these composites, obtaining temperature limits for use in the range of 100 º C to 130 º C. Based on the analysis of the results of performance and thermal properties, it was possible to conclude that the COF composites with load of expanded vermiculite present behavior very close to those exhibited by commercial insulation material
Resumo:
In this work a pyrometer using the classic model of Kimball-Hobbs was developed, tested and calibrated. The solar radiation is verified through the temperature difference between the sensible elements covered by absorbing (black) and reflecting (white) pigmentations of the incoming radiation. The photoacoustic technique was used to optimize the choice of the pigments. Methodologies associated with linearity, thermo-variation, sensibility, response time and distance are also presented. To correctly classify the results, the international standard ISO 9060 as well as indicative parameters of World Meteorological Organization (WMO) are used. In addition a system of data acquisition of two channels with 12 bits, constructed during the this time, was used to measure the global solar radiation on the ground by the pyrometer and also by another pyrometer certified in the case of Keep & zonen. The results statistically show, through the hypothesis test presented here, that both equipments find population average with 95% of correctness
Resumo:
An alternative box-type solar oven constructed from the scrap iron of a gas conventional cook is presented, which functions principles are the effect greenhouse and the concentration. The oven of the conventional cook is the baking enclosure where the absorber (pot) of the solar oven is located, being re-covered for a glass blade for the generation of the greenhouse effect isolated lateral and having deep its and for a composite the plaster base and EPS. Segments of plain mirrors had been placed in the laterals of the oven for the concentration of the radiation and a reflecting parabola was introduced in the baking enclosure for the exploitation of the incident reflected radiation in the interior of the oven. The oven is mobile to allow one better aiming of exactly in relation to the apparent movement of the sun. The thermal economic and of materials viabilities of the stove in study will be demonstrate The average internal temperature of the absorber was around 150°C and the internal temperature around 120°C. Will demonstrate that its low cost and good thermal performance represents basic characteristics for the viability of large use of such archetype, mainly for cooking the decreases and averages temperatures. One will reveal that the archetype in study is competitive with the box-type solar cooker conceived in the whole world
Resumo:
The production of red ceramic is an industrial activity that causes an intense impact. The manufacture of its products considerably increases the demand for natural resources, mainly with the extraction of raw material. The ceramic material produced generates waste, such as ash firewood and chamote. The residue from the beneficiation of kaolin is deposited in a poor, degrades the environment and contaminate water sources and soil, constituting in this manner, ecological disasters. The main objective of this work is to develop the formulation of a ceramic product consisting solely of industrial solid wastes, from ceramic tiles, (chamote) residue of kaolin and ash firewood. It is assumed that this product made in the laboratory can be used in coatings, wall and floor. The aim is to facilitate the replacement of the raw material of original composition of a ceramic body, for waste, while the process of production equal to the conventionally used, so that the properties of the product are reproduced. This work is characterized waste as its chemical composition, analysis of particle size, X-ray diffraction and thermal behavior. Several formulations were studied. The mass of waste was prepared by dry process, pressed to 25 MPa, and then burned in muffle type oven to 850, 950, 1050 and 1150 °C. The results showed that it is technically possible to produce porous tiles only with waste. It was found that the formulations of bodies play a key role in the properties of the final product, as well as the sintering temperature and heating rates. RN in the waste of kaolin is estimated at 15,000 t/month, about 3,000 gray t/month and chamote with 10 million pieces/month damaged. The presence of carbonates of calcium and magnesium at 1050 ° C results in an appropriate porosity and mechanical strength. The formulation M3JE, composed of 69% waste of kaolin, 7.7% and 23.3% of chamote of gray, became suitable for porous materials with the strength and absorption within the level of national and international standards
Resumo:
Porous ceramics have many applications: thermal insulation, catalytic support, materials to fire protection, filters, and others. There are many techniques to production of ceramic filters. One technique to obtain ceramic filters is the replication method. This method consists in the impregnation of polymeric foam with ceramic slurry followed by a heating treatment that will burn out the organic elements and sintering of the material, resulting of a replication of the original foam. To perform their functions ceramic filters must satisfy mechanical requirements and permeability parameters (darcian k1 and no-darcian k2). The permeability and the strength of the ceramic material are dependent of the pore size and pore distribution. To the use at high temperatures the evaluation of mechanical properties in these temperatures is necessary. In this work the mechanical behavior of two commercial porous ceramics (10 and 40 poros per inch) was studied these materials were submitted to compression and four-point flexure test (room temperature, at 1000 °C, after thermal shock). Density and porosity measurements, permeability tests and microstructural analysis by scanning electronic microscopy (SEM) were realized. The Results showed that the decrease of mechanical strength of these materials, when submitted to thermal shock, occur for propagation of new cracks from cracks pre-existing and the permeability depends of the pore size
Resumo:
Due to advances in the manufacturing process of orthopedic prostheses, the need for better quality shape reading techniques (i.e. with less uncertainty) of the residual limb of amputees became a challenge. To overcome these problems means to be able in obtaining accurate geometry information of the limb and, consequently, better manufacturing processes of both transfemural and transtibial prosthetic sockets. The key point for this task is to customize these readings trying to be as faithful as possible to the real profile of each patient. Within this context, firstly two prototype versions (α and β) of a 3D mechanical scanner for reading residual limbs shape based on reverse engineering techniques were designed. Prototype β is an improved version of prototype α, despite remaining working in analogical mode. Both prototypes are capable of producing a CAD representation of the limb via appropriated graphical sheets and were conceived to work purely by mechanical means. The first results were encouraging as they were able to achieve a great decrease concerning the degree of uncertainty of measurements when compared to traditional methods that are very inaccurate and outdated. For instance, it's not unusual to see these archaic methods in action by making use of ordinary home kind measure-tapes for exploring the limb's shape. Although prototype β improved the readings, it still required someone to input the plotted points (i.e. those marked in disk shape graphical sheets) to an academic CAD software called OrtoCAD. This task is performed by manual typing which is time consuming and carries very limited reliability. Furthermore, the number of coordinates obtained from the purely mechanical system is limited to sub-divisions of the graphical sheet (it records a point every 10 degrees with a resolution of one millimeter). These drawbacks were overcome by designing the second release of prototype β in which it was developed an electronic variation of the reading table components now capable of performing an automatic reading (i.e. no human intervention in digital mode). An interface software (i.e. drive) was built to facilitate data transfer. Much better results were obtained meaning less degree of uncertainty (it records a point every 2 degrees with a resolution of 1/10 mm). Additionally, it was proposed an algorithm to convert the CAD geometry, used by OrtoCAD, to an appropriate format and enabling the use of rapid prototyping equipment aiming future automation of the manufacturing process of prosthetic sockets.
Resumo:
The vehicles are the main mobile sources of carbon monoxide (CO) and unburned hydrocarbons (HC) released into the atmosphere. In the last years the increment of the fleet of vehicles in the municipal district of Natal-RN it is contributing to the increase of the emissions of those pollutants. The study consisted of a statistical analysis of the emissions of CO and HC of a composed sample for 384 vehicles with mechanization Gasoline/CNG or Alcohol/Gasoline/CNG of the municipal district of Natal-RN. The tests were accomplished in vehicles submitted to Vehicular Safety's Inspection, in the facilities of INSPETRANS, Organism of Vehicular Inspection. An partial gases analyzer allowed to measure, for each vehicle, the levels of CO and HC in two conditions of rotation of the motor (900 and 2500 rpm). The statistical analysis accomplished through the STATISTICA software revealed a sensitive reduction in the efficiency of the converters catalytic after 6 years of use with emission average it is of 0,78% of CO and 156 (ppm) of HC, Which represents approximately 4 (four) times the amount of CO and the double of HC in comparison with the newest vehicles. The result of a Student s t-test, suggests strongly that the average of the emissions of HC (152 ppm), at 900 rpm, is 40% larger than at 2500 rpm, for the motor without load. This result reveals that the efficiency of the catalytic conversion is limited kinetically in low engine speeds. The Study also ends that when comparing the emissions of CO and HC considering the influence of the fuels, it was verified that although the emissions of CO starting from CNG are 62% smaller than arising from the gasoline, there are not significant differences among the emissions of HC originating from of CNG and of the gasoline. In synthesis, the results place the current criteria of vehicular inspection, for exhaust gases, in doubt, leading the creation of emission limits of pollutant more rigorous, because the efficiency of the converters catalytic is sensibly reduced starting from 6 years of use. It is also raised the possibility of modifications in the test conditions adopted by the current norms, specifically in the speed engine, have seen that in the condition without load the largest emission indexes were registered in slow march. That fact that allows to suggest the dismissal of the tests in high speed engine, reducing the time of inspection in half and generating economy of fuel
Resumo:
The search for alternative materials with lower density, reduction in heat transfer and propagation of noise associated with the ease of handling and application in concrete structures, represents an enormous challenge in the formulation and knowledge of the performance of self-compacting lightweight concrete, which has technology little known nationally, and appears on the international scene as an innovative material and alternative to conventional concrete. Based on these, this study set out to study self-compacting lightweight concrete made with two distinct grades of expanded clay associated with the addition of plasticizing/superplasticizers additives and mineral additions of metakaolin and bagasse ash of sugar cane. There is also an object of study, evaluation of pozzolanic activity of mineral admixtures and their influence on the durability characteristics of concrete. The rheological, physical, mechanical and microstructural analysis in this study served as basis in the classification of concretes autoadensáveis, targeting the national technical requirements for their classification in the category autoadensável and lightweight structural. The inclusion of mineral admixtures (metakaolin and bagasse ash of sugar cane), partial replacement of cement, pozzolanic activity and demonstrated maintenance of mechanical properties through the filler effect, a reduction of up to 76% of the nitrogen gas permeability in blend with 20% bagasse ash. All concretes had rheology (cohesion and consistency) suitable for self-adensability as well as strength and density inherent structural lightweight concrete without presenting phenomena of segregation and exudation
Resumo:
The production of roof tiles in the state of Rio Grande do Norte accounts for around 60% of the total of ceramic pieces produced. There is a need for investment to improve quality and productivity, thereby promoting technological innovations. Accordingly, the aim of this study is to determine the effect of kaolin, potassium feldspar and quartz in two standard formulations, as well as the effect of sintering temperature on the technological properties of linear firing shrinkage, water absorption and bending rupture stress, by fitting the statistical model and using multiple linear regression to assess the relationship between technological properties and independent variables. The raw materials were characterized using the following techniques: X-ray fluorescence (XRF), X-ray diffraction (XRF), rational analysis (RA), differential thermal analysis (DTA) and granulometric analysis (GA). The test specimens were compacted by uniaxial pressure (25 MPa), dried in a stove at 110 ºC for 24 hours and sinterized at 850 ºC, 950 ºC and 1050 ºC and held isothermal for 30 minutes. The results obtained indicate that the addition of kaolin to two standard formulations (M and R) promoted a reduction in water absorption values and an increase in bending rupture stress values. The sintering temperatures for group M that resulted in the lowest linear firing shrinkage and water absorption values were 850 ºC and 950 ºC, respectively, and the highest bending rupture stress values were reached at a temperature of 950 ºC. In the case of group R, the sintering temperature that obtained the lowest water absorption and linear firing shrinkage values was 850 ºC, and the highest bending rupture stress values were attained at a temperature of 1050 ºC. This work explains the statistical approach used to fit the model that describes the relationship between the technological properties and percentage of kaolin, quartz and feldspar, as well as the models that enable predictions, provided that the lower and upper limits of the percentage of clay minerals, flux and quartz used in this study are respected. Statistica 6 software was used and results were obtained by stepwise forward regression