926 resultados para Electron ion interaction pseudo potential(EIIP)
Resumo:
Nonlinear optics is a broad field of research and technology that encompasses subject matter in the field of Physics, Chemistry, and Engineering. It is the branch of Optics that describes the behavior of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed at very high light intensities. This area has applications in all optical and electro optical devices used for communication, optical storage and optical computing. Many nonlinear optical effects have proved to be versatile probes for understanding basic and applied problems. Nonlinear optical devices use nonlinear dependence of refractive index or absorption coefficient on the applied field. These nonlinear optical devices are passive devices and are referred to as intelligent or smart materials owing to the fact that the sensing, processing and activating functions required for optical processes are inherent to them which are otherwise separate in dynamic devices.The large interest in nonlinear optical crystalline materials has been motivated by their potential use in the fabrication of all-optical photonic devices. Transparent crystalline materials can exhibit different kinds of optical nonlinearities which are associated with a nonlinear polarization. The choice of the most suitable crystal material for a given application is often far from trivial; it should involve the consideration of many aspects. A high nonlinearity for frequency conversion of ultra-short pulses does not help if the interaction length is strongly limited by a large group velocity mismatch and the low damage threshold limits the applicable optical intensities. Also, it can be highly desirable to use a crystal material which can be critically phasematched at room temperature. Among the different types of nonlinear crystals, metal halides and tartrates have attracted due to their importance in photonics. Metal halides like lead halides have drawn attention because they exhibit interesting features from the stand point of the electron-lattice interaction .These materials are important for their luminescent properties. Tartrate single crystals show many interesting physical properties such as ferroelectric, piezoelectric, dielectric and optical characteristics. They are used for nonlinear optical devices based on their optical transmission characteristics. Among the several tartrate compounds, Strontium tartrate, Calcium tartrate and Cadmium tartrate have received greater attention on account of their ferroelectric, nonlinear optical and spectral characteristics. The present thesis reports the linear and nonlinear aspects of these crystals and their potential applications in the field of photonics.
Resumo:
The development and optimization of electrocatalysts for application in fuel cell systems have been the focus of a variety of studies where core–shell structures have been considered as a promising alternative among the materials studied. We synthesized core–shell nanoparticles of Sn x @Pt y and Rh x @Pt y (Sn@Pt, Sn@Pt2, Sn@Pt3, Rh@Pt, Rh@Pt2, and Rh@Pt3) through a reduction methodology using sodium borohydride. These nanoparticles were electrochemically characterized by cyclic voltammetry and further analyzed by cyclic voltammetry studying their catalytic activity toward glycerol electro-oxidation; chronoamperometry and potentiostatic polarization experiments were also carried out. The physical characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The onset potential for glycerol oxidation was shifted in 130 and 120 mV on the Sn@Pt3/C and Rh@Pt3/C catalysts, respectively, compared to commercial Pt/C, while the stationary pseudo-current density, taken at 600 mV, increased 2-fold and 5-fold for these catalysts related to Pt/C, respectively. Thus, the catalysts synthesized by the developed methodology have enhanced catalytic activity toward the electro-oxidation of glycerol, representing an interesting alternative for fuel cell systems.
Resumo:
Le graphène est une nanostructure de carbone hybridé sp2 dont les propriétés électroniques et optiques en font un matériau novateur avec un très large potentiel d’application. Cependant, la production à large échelle de ce matériau reste encore un défi et de nombreuses propriétés physiques et chimiques doivent être étudiées plus en profondeur pour mieux les exploiter. La fonctionnalisation covalente est une réaction chimique qui a un impact important dans l’étude de ces propriétés, car celle-ci a pour conséquence une perte de la structure cristalline des carbones sp2. Néanmoins, la réaction a été très peu explorée pour ce qui est du graphène déposé sur des surfaces, car la réactivité chimique de ce dernier est grandement dépendante de l’environnement chimique. Il est donc important d’étudier la fonctionnalisation de ce type de graphène pour bien comprendre à la fois la réactivité chimique et la modification des propriétés électroniques et optiques pour pouvoir exploiter les retombées. D’un autre côté, les bicouches de graphène sont connues pour avoir des propriétés très différentes comparées à la monocouche à cause d’un empilement des structures électroniques, mais la croissance contrôlée de ceux-ci est encore très difficile, car la cinétique de croissance n’est pas encore maîtrisée. Ainsi, ce mémoire de maîtrise va porter sur l’étude de la réactivité chimique du graphène à la fonctionnalisation covalente et de l’étude des propriétés optiques du graphène. Dans un premier temps, nous avons effectué des croissances de graphène en utilisant la technique de dépôt chimique en phase vapeur. Après avoir réussi à obtenir du graphène monocouche, nous faisons varier les paramètres de croissance et nous nous rendons compte que les bicouches apparaissent lorsque le gaz carboné nécessaire à la croissance reste présent durant l’étape de refroidissement. À partir de cette observation, nous proposons un modèle cinétique de croissance des bicouches. Ensuite, nous effectuons une étude approfondie de la fonctionnalisation du graphène monocouche et bicouche. Tout d’abord, nous démontrons qu’il y a une interaction avec le substrat qui inhibe grandement le greffage covalent sur la surface du graphène. Cet effet peut cependant être contré de plusieurs façons différentes : 1) en dopant chimiquement le graphène avec des molécules réductrices, il est possible de modifier le potentiel électrochimique afin de favoriser la réaction; 2) en utilisant un substrat affectant peu les propriétés électroniques du graphène; 3) en utilisant la méthode d’électrogreffage avec une cellule électrochimique, car elle permet une modulation contrôlée du potentiel électrochimique du graphène. De plus, nous nous rendons compte que la réactivité chimique des bicouches est moindre dû à la rigidité de structure due à l’interaction entre les couches. En dernier lieu, nous démontrons la pertinence de la spectroscopie infrarouge pour étudier l’effet de la fonctionnalisation et l’effet des bicouches sur les propriétés optiques du graphène. Nous réussissons à observer des bandes du graphène bicouche dans la région du moyen infrarouge qui dépendent du dopage. Normalement interdites selon les règles de sélection pour la monocouche, ces bandes apparaissent néanmoins lorsque fonctionnalisée et changent grandement en amplitude dépendamment des niveaux de dopage et de fonctionnalisation.
Resumo:
Le graphène est une nanostructure de carbone hybridé sp2 dont les propriétés électroniques et optiques en font un matériau novateur avec un très large potentiel d’application. Cependant, la production à large échelle de ce matériau reste encore un défi et de nombreuses propriétés physiques et chimiques doivent être étudiées plus en profondeur pour mieux les exploiter. La fonctionnalisation covalente est une réaction chimique qui a un impact important dans l’étude de ces propriétés, car celle-ci a pour conséquence une perte de la structure cristalline des carbones sp2. Néanmoins, la réaction a été très peu explorée pour ce qui est du graphène déposé sur des surfaces, car la réactivité chimique de ce dernier est grandement dépendante de l’environnement chimique. Il est donc important d’étudier la fonctionnalisation de ce type de graphène pour bien comprendre à la fois la réactivité chimique et la modification des propriétés électroniques et optiques pour pouvoir exploiter les retombées. D’un autre côté, les bicouches de graphène sont connues pour avoir des propriétés très différentes comparées à la monocouche à cause d’un empilement des structures électroniques, mais la croissance contrôlée de ceux-ci est encore très difficile, car la cinétique de croissance n’est pas encore maîtrisée. Ainsi, ce mémoire de maîtrise va porter sur l’étude de la réactivité chimique du graphène à la fonctionnalisation covalente et de l’étude des propriétés optiques du graphène. Dans un premier temps, nous avons effectué des croissances de graphène en utilisant la technique de dépôt chimique en phase vapeur. Après avoir réussi à obtenir du graphène monocouche, nous faisons varier les paramètres de croissance et nous nous rendons compte que les bicouches apparaissent lorsque le gaz carboné nécessaire à la croissance reste présent durant l’étape de refroidissement. À partir de cette observation, nous proposons un modèle cinétique de croissance des bicouches. Ensuite, nous effectuons une étude approfondie de la fonctionnalisation du graphène monocouche et bicouche. Tout d’abord, nous démontrons qu’il y a une interaction avec le substrat qui inhibe grandement le greffage covalent sur la surface du graphène. Cet effet peut cependant être contré de plusieurs façons différentes : 1) en dopant chimiquement le graphène avec des molécules réductrices, il est possible de modifier le potentiel électrochimique afin de favoriser la réaction; 2) en utilisant un substrat affectant peu les propriétés électroniques du graphène; 3) en utilisant la méthode d’électrogreffage avec une cellule électrochimique, car elle permet une modulation contrôlée du potentiel électrochimique du graphène. De plus, nous nous rendons compte que la réactivité chimique des bicouches est moindre dû à la rigidité de structure due à l’interaction entre les couches. En dernier lieu, nous démontrons la pertinence de la spectroscopie infrarouge pour étudier l’effet de la fonctionnalisation et l’effet des bicouches sur les propriétés optiques du graphène. Nous réussissons à observer des bandes du graphène bicouche dans la région du moyen infrarouge qui dépendent du dopage. Normalement interdites selon les règles de sélection pour la monocouche, ces bandes apparaissent néanmoins lorsque fonctionnalisée et changent grandement en amplitude dépendamment des niveaux de dopage et de fonctionnalisation.
Resumo:
We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the yN/\wurzel{Hz}range, i.e. in the xN/\wurzel{Hz}(xennonewton, 10^−27). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages.
Resumo:
The interplay between the biocolloidal characteristics (especially size and charge), pH, salt concentration and the thermal energy results in a unique collection of mesoscopic forces of importance to the molecular organization and function in biological systems. By means of Monte Carlo simulations and semi-quantitative analysis in terms of perturbation theory, we describe a general electrostatic mechanism that gives attraction at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid residues is discussed in a purely electrostatic framework. The complexation data reported here for interaction between a polyelectrolyte chain and the proteins albumin, goat and bovine alpha-lactalbumin, beta-lactoglobulin, insulin, k-casein, lysozyme and pectin methylesterase illustrate the importance of the charge regulation mechanism. Special attention is given to pH congruent to pI where ion-dipole and charge regulation interactions could overcome the repulsive ion-ion interaction. By means of protein mutations, we confirm the importance of the charge regulation mechanism, and quantify when the complexation is dominated either by charge regulation or by the ion-dipole term.
Resumo:
We use the Kharzeev-Levin-Nardi (KLN) model of the low x gluon distributions to fit recent HERA data on F(L) and F(2)(c)(F(2)(b)). Having checked that this model gives a good description of the data, we use it to predict F(L) and F(2)(c) to be measured in a future electron-ion collider. The results are similar to those obtained with the de Florian-Sassot and Eskola-Paukkunen-Salgado nuclear gluon distributions. The conclusion of this exercise is that the KLN model, simple as it is, may still be used as an auxiliary tool to make estimates for both heavy-ion and electron-ion collisions.
Resumo:
Magnetoresistance measurements in p-type Pb(1-x)Eu(x)Te alloys, for x varying from 0% up to 5%, have been used to investigate localization and antilocalization effects. These are attributed to both the spin-orbit scattering and to the large Zeeman splitting present in these alloys due to the large values of the effective Lande g factor. The magnetoresistance curves are analyzed using the model of Fukuyama and Hoshino, which takes into account the spin-orbit and Zeeman scattering mechanisms. The spin-orbit scattering time is found to be independent of the temperature, while the inelastic-scattering time increases with decreasing temperature suggesting the electron-phonon interaction as the main scattering mechanism.
Resumo:
The tris(1-pyrazolyl)methanesulfonate lithium salt Li(Tpms) [Tpms = SO3C(pz)(3)-] reacts with [Mo(CO)(6)] in NCMe heated at reflux to yield Li[Mo(Tpms)(CO)(3)] (1), which, upon crystallization from thf, forms the coordination polymer [Mo(Tpms)(CO)(2)(mu-CO)Li(thf)(2)](n) (2). Reaction of 1 with I-2, HBF4 or AgBF4 yields [Mo(Tpms)I(CO)(3)] (3), (Mo(Tpms)-H(CO)(3)] (5) or (Mo(Tpms)O-2](2)(mu-O) (7), respectively. The high-oxidation-state dinuclear complexes [{Mo(Tpms)O(mu-O)}(2)] (4) and [{Mo(tpms)OCl)(2)](mu-O) (6) are formed upon exposure to air of solutions of 3 and 5, respectively. Compounds 1-7, which appear to be the first tris(pyrazolyl)methanesulfonate complexes of molybdenum to be reported, were characterized by IR, H-1 and C-13 NMR spectroscopy, ESI-MS, elemental analysis, cyclic voltammetry and, in the cases of Li(Tpms) and compounds 2, 4.2CH(3)CN, 6.6CHCl(3) and 7, by X-ray diffraction analyses. Li(Tpms) forms a 1D polymeric structure (i.e., [Li(tpms)](n)} with Tpms as a tetradentate N2O2 chelating ligand that bridges two Li cations with distorted tetrahedral coordination. Compound 2 is a 1D coordination polymer in which Tpms acts as a bridging tetradentate N3O ligand and each Li(thf)(2)(+) moiety is coordinated by one bridging CO ligand and by the sulfonyl group of a contiguous monomeric unit. In 4, 6 and 7, the Tpms ligand is a tridentate chelator either in the NNO (in 4) or in the NNN (in 6 and 7) fashion. Complexes 1, 3 and 5 exhibit, by cyclic voltammetry, a single-electron oxidation at oxidation potential values that indicate that the Tpms ligand has an electron-donor character weaker than that of cyclopentadienyl.
Resumo:
Spin-lattice Relaxation, self-Diffusion coefficients and Residual Dipolar Couplings (RDC’s) are the basis of well established Nuclear Magnetic Resonance techniques for the physicochemical study of small molecules (typically organic compounds and natural products with MW < 1000 Da), as they proved to be a powerful and complementary source of information about structural dynamic processes in solution. The work developed in this thesis consists in the application of the earlier-mentioned NMR techniques to explore, analyze and systematize patterns of the molecular dynamic behavior of selected small molecules in particular experimental conditions. Two systems were chosen to investigate molecular dynamic behavior by these techniques: the dynamics of ion-pair formation and ion interaction in ionic liquids (IL) and the dynamics of molecular reorientation when molecules are placed in oriented phases (alignment media). The application of NMR spin-lattice relaxation and self-diffusion measurements was applied to study the rotational and translational molecular dynamics of the IL: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]. The study of the cation-anion dynamics in neat and IL-water mixtures was systematically investigated by a combination of multinuclear NMR relaxation techniques with diffusion data (using by H1, C13 and F19 NMR spectroscopy). Spin-lattice relaxation time (T1), self-diffusion coefficients and nuclear Overhauser effect experiments were combined to determine the conditions that favor the formation of long lived [BMIM][BF4] ion-pairs in water. For this purpose and using the self-diffusion coefficients of cation and anion as a probe, different IL-water compositions were screened (from neat IL to infinite dilution) to find the conditions where both cation and anion present equal diffusion coefficients (8% water fraction at 25 ºC). This condition as well as the neat IL and the infinite dilution were then further studied by 13C NMR relaxation in order to determine correlation times (c) for the molecular reorientational motion using a mathematical iterative procedure and experimental data obtained in a temperature range between 273 and 353 K. The behavior of self-diffusion and relaxation data obtained in our experiments point at the combining parameters of molar fraction 8 % and temperature 298 K as the most favorable condition for the formation of long lived ion-pairs. When molecules are subjected to soft anisotropic motion by being placed in some special media, Residual Dipolar Couplings (RDCs), can be measured, because of the partial alignment induced by this media. RDCs are emerging as a powerful routine tool employed in conformational analysis, as it complements and even outperforms the approaches based on the classical NMR NOE or J3 couplings. In this work, three different alignment media have been characterized and evaluated in terms of integrity using 2H and 1H 1D-NMR spectroscopy, namely the stretched and compressed gel PMMA, and the lyotropic liquid crystals CpCl/n-hexanol/brine and cromolyn/water. The influence that different media and degrees of alignment have on the dynamic properties of several molecules was explored. Different sized sugars were used and their self-diffusion was determined as well as conformation features using RDCs. The results obtained indicate that no influence is felt by the small molecules diffusion and conformational features studied within the alignment degree range studied, which was the 3, 5 and 6 % CpCl/n-hexanol/brine for diffusion, and 5 and 7.5 % CpCl/n-hexanol/brine for conformation. It was also possible to determine that the small molecules diffusion verified in the alignment media presented close values to the ones observed in water, reinforcing the idea of no conditioning of molecular properties in such media.
Resumo:
The adsorption of H and S2- species on Pd (100) has been studied with ab initio, density-functional calculations and electrochemical methods. A cluster of five Pd atoms with a frozen geometry described the surface. The computational calculations were performed through the GAUSSIAN94 program, and the basis functions adapted to a pseudo-potential obtained by using the Generator Coordinate Method adapted to the this program. Using the cyclic voltammetry technique through a Model 283 Potentiostat/Galvanostat E.G.&G-PAR obtained the electrochemical results. The calculated chemisorption geometry has a Pd-H distance of 1.55Å, and the potential energy surface was calculated using the Becke3P86//(GCM/DFT/SBK) methodology. The adsorption of S2- ions on Pd surface obtained both through comparison between the experimental and theoretical results, at MP2 level, suggest a S2- absorption into the metallic cluster. The produced Pd-(S2-) system was show to be very stable under the employed experimental conditions. The paper has shows the powerful aid of computational methods to interpret adsorption experimental data.
Resumo:
Different parameters of carbon ceramic electrodes (CCE) preparation, such as type of precursor, carbon material, catalyst amount, among others, significantly influence the morphological properties and consequently their electrochemical responses. This paper describes a 2³ factorial design (2 factors and 3 levels with central point replicates), which the factors analyzed were catalyst amount (HCl 12 mol L-1), graphite/precursor ratio, and precursor type (TEOS - tetraethoxysilane and MTMOS - methyltrimetoxysilane). The design resulted in a significant third order interaction for peak current values (Ipa) and a second order interaction for potential difference (ΔE), between thefactors studied, which could not be observed when using an univariated study.
Resumo:
Työssä tutkittiin kirjallisuustyönä akkuteknologian nykytilaa ja markkinoita kulutuselektroniikan osalta. Työssä tehtiin myös katsaus potentiaalisiin tulevaisuuden akkuteknologioihin. Työssä havaittiin, että kulutuselektroniikassa ainoat suuresti käytetyt akkutyypit ovat nikkelimetallihybridi- (NiMH) ja litiumioniakut (Li-ion). Tärkeimpänä ominaisuutena kulutuselektroniikassa akuilla yleensä pidetään kapasiteettia, jossa Li-ion akut ovat selvästi parempia jopa kaksinkertaisen energiatiheyden takia. Li-ion akuilla voidaan saavuttaa myös moninkertainen käyttöikä lataussykleinä ja moninkertainen purkausvirta, riippuen käytetystä katodimateriaalista. NiMH akuilla etuna on lähinnä halvempi hinta ja parempi turvallisuus. Toisaalta myös pieni jännite voidaan laskea hyväksi puoleksi, koska NiMH akuilla voidaan korvata kertakäyttöisiä alkaliparistoja. Vuonna 2012 Li-ion akkuja myytiin kapasiteetissa mitattuna jopa kahdeksan kertaa enemmän kuin NiMH akkuja ja myyntimäärien ennustetaan myös kasvavan tulevaisuudessa. Liion akkujen myyntimääristä suurin osa oli kulutuselektroniikan käyttökohteisiin ja jopa kaksi kolmasosaa oli kannettavien tietokoneiden ja kännyköiden akkuja. Uusia akkuteknologioita ja Li-ion akkujen parannuksia on paljon kehitteillä, mutta suurimman potentiaalin ja myös suuret ongelmat kaupallistumiseen omaa litium-ilma akut. Lyhyemmällä aikavälillä potentiaalisia teknologioita ovat litium-rikki akut, sekä nykyisiin Li-ion akkuihin kehitteillä olevat anodimateriaalit kuten esim. pii ja alumiini/titaani, joiden ongelmiin on löydetty ratkaisuja nanoteknologiasta.
Resumo:
The fragmentation processes in the mass spectra of a series of organophosphorus, organochlorine, thio and dithiocarbamate as well as a number of miscellaneous pesticides have been studied i n detail by using the Bendix timeof- flight, MS-12 single-focussing and MS-30 double-focussing mass spectrometers. Interpretation of all the spectra have been presented; their mode s of dissociation elucidated, aided by metastable transitions wherever possible and the structures of the various f ragmentation species postulated wherever f easible. The fragmentation mechanisms are based on the concepts of inductive, resonance and steric ef~ects. Multiple bond cleavages accompanied by simultaneous bond formation and rearrangement reactions involving cycli c t r ansition states have clarified t he formation of various ions . Due emphasis has been placed on the effect of the functional groups or substituents in altering the mass spectral behaviour of the pesticides as they form the basis for the identifi cation of the otherwise identical pesticides. The organophosphorus pesticides which have been studied include i) the phosphates (eg: DDVP and Phosdrin ); ii) phosphorothionates (eg: Parathion, 0-2, 4 dichloro phenyl 0, O-diethyl thionophosphate); iii) phosphorothioites (eg: Tributyl phosphorotrithioite); i V) phosphorothioates (eg: Ethion) and v) phosphorodithioates (eg: Carbophenolthion). Cleavages and rearrangements of the ester moiety dominate the spectrum of phosdrin while that of DDVP is + dominated by t he fragmentation modes of the (OH30)2P=0 + moiety. Fragmentation §f the (CH30)2P=S characterises the spectrum of (OH30)2"P -Cl while cleavages of the + (C2H50 )2P=S species mark the spectra of parathion and 0-2, 4- di chlorophenyl O, O-diethyl thiophosphate. The 0(, cl eavages of the thioether f unction rather than + cleavages of the (C2H50)2P=S signify the spectrum of carbophenolthion. Tributyl phosphorotrithioite behaves more like an aliphatic hydrocarbon than like the corresponding phosphites. The isopropyl and butyl esters of 2, 4 dichlorophenoxy acetic acid show cleavage and rearrangement ions typical of an ester. In spite of its structural similari ty to pp' - DDT and pp' - DDD, Kalthane has a completely different mass spectral behaviour due to the influence of its hydroxyl function. The thiocarbamate pesticides studied include Eptam and Perbulate. Both are structurally similar but having different alkyl substituents on nitrogen and sulphur. This structurQlsimilarity leads to similar types of (N-C), (O-S) and (S-alkyl cleavages). However, perbulate differs from Eptam in showing a rearrangement ion at mle 161 and in forming an isocyanate ion as the base peak. In Eptam the base peak i s the alkyl ion. The dithiocarbamate, Vegadex, resembles the thiocarbamates in undergoing simple cleavages but it differs from them in having a weak parent ion; in the formation of its base peak and in undergoing a series of rearrangement reactions. The miscellaneous pesticides studied include 1-Naphthalene acetic aCid- methyl ester, Fiperonyl butoxide and Allethrin. The ester i s stable to electron impact and shows only fewer ions. Piper onyl butoxide, a polyether, shows characteristics of an et her, alcohol and aldehyde . Allethrin is regarded as an ester of the type R-C-O-R1 with n R being a substituted cyclopr opane moiety and o Rt, a substituted cyclopentenone mOiety. Accordingly it shows cleavage ions typical of an aliphatic ester and undergoes bond ruptures of the cyclic moieties to give unusual ions. Its base peak is an odd electron ion, quite contrary to expectations.
Resumo:
Maximum production rates ofs and decay kinetics for the hydrated electron, the indolyl neutral radical and the indole triplet state have been obtained in the microsecond, broadband (X > 260 nm) flash photolysis of helium-saturated, neutral aqueous solutions of indole, in the absence and in the presence of the solutes NaBr, BaCl2*2H20 and CdSCV Fluorescence spectra and fluorescence lifetimes have also been obtained in the absence and in the presence of the above solutes, The hydrated electron is produced monophotonically and biphotonically at an apparent maximum rate which is increased by BaCl2*2H20 and decreased by NaBr and CdSOif. The neutral indolyl radical may be produced monophotonically and biphotonically or strictly monophotonically at an apparent maximum rate which is increased by NaBr and CdSO^ and is unaffected by BaCl2*2H20. The indole triplet state is produced monophotonically at a maximum rate which is increased by all solutes. The hydrated electron decays by pseudo first order processes, the neutral indolyl radical decays by second order recombination and the indole triplet state decays by combined first and second order processes. Hydrated electrons are shown to react with H , H2O, indole, Na and Cd"*""1"". No evidence has been found for the reaction of hydrated electrons with Ba . The specific rate of second order neutral indolyl radical recombination is unaffected by NaBr and BaCl2*2H20, and is increased by CdSO^. Specific rates for both first and second order triplet state decay processes are increased by all solutes. While NaBr greatly reduced the fluorescence lifetime and emission band intensity, BaCl2*2H20 and CdSO^ had no effect on these parameters. It is suggested that in solute-free solutions and in those containing BaCl2*2H20 and CdSO^, direct excitation occurs to CTTS states as well as to first excited singlet states. It is further suggested that in solutions containing NaBr, direct excitation to first excited singlet states predominates. This difference serves to explain increased indole triplet state production (by ISC from CTTS states) and unchanged fluorescence lifetimes and emission band intensities in the presence of BaCl2*2H20 and CdSOt^., and increased indole triplet state production (by ISC from S^ states) and decreased fluorescence lifetime and emission band intensity in the presence of NaBr. Evidence is presented for (a) very rapid (tx ^ 1 us) processes involving reactions of the hydrated electron with Na and Cd which compete with the reformation of indole by hydrated electron-indole radical cation recombination, and (b) first and second order indole triplet decay processes involving the conversion of first excited triplet states to vibrationally excited ground singlet states.