976 resultados para EIC,SiPM,dRICH,silicon photomultiplier
Resumo:
An experimental investigation of mechanical properties of thin films using nanoindentation was reported. Silicon nitride thin films with different thicknesses were deposited using plasma enhanced chemical vapor deposition (PECVD) on Si substrate. Nanoindentation was used to measure their elastic modulus and hardness. The results indicated that for a film/substrate bilayer system, the measured mechanical properties are significantly affected by the substrate properties. Empirical formulas were proposed for deconvoluting the film properties from the measured bilayer properties.
Resumo:
We propose a model for permeation in oxide coated gas barrier films. The model accounts for diffusion through the amorphous oxide lattice, nano-defects within the lattice, and macro-defects. The presence of nano-defects indicate the oxide layer is more similar to a nano-porous solid (such as zeolite) than silica glass with respect to permeation properties. This explains why the permeability of oxide coated polymers is much greater, and the activation energy of permeation much lower, than values expected for polymers coated with glass. We have used the model to interpret permeability and activation energies measured for the inert gases (He, Ne and Ar) in evaporated SiOx films of varying thickness (13-70 nm) coated on a polymer substrate. Atomic force and scanning electron microscopy were used to study the structure of the oxide layer. Although no defects could be detected by microscopy, the permeation data indicate that macro-defects (>1 nm), nano-defects (0.3-0.4 nm) and the lattice interstices (<0.3 nm) all contribute to the total permeation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Directional solidification of unmodified and strontium modified binary, high-purity aluminium-7 wt% silicon and commercial A356 alloys has been carried out to investigate the mechanism of eutectic solidification. The microstructure of the eutectic growth inter-face was investigated with optical microscopy and Electron Backscattering Diffraction (EBSD). In the commercial alloys, the eutectic solidification inter-face extends in the growth direction and creates a eutectic mushy zone. A planar eutectic growth front is observed in the high-purity alloys. The eutectic aluminium has mainly the same crystallographic orientation as the dendrites in the unmodified alloys and the strontium modified high-purity alloy. A more complex eutectic grain structure is found in the strontium modified commercial alloy. A mechanism involving constitutional undercooling and a columnar to equiaxed transition explains the differences between pure and commercial alloys. It is probably caused by the segregation of iron and magnesium and the activation of nucleants in the commercial alloy. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In recent years, the application of silicon (Si) in crops, including coffee, has become a common practice. The objective of this study was to assess the silicon uptake by coffee seedlings and its effects on plant growth, water and macro and micronutrient uptake. The research was conducted using nutrient solution in a greenhouse at the Departamento de Fitotecnia da Universidade Federal de Viçosa, in a completely randomized design with two treatments (with and without silicon) and three replications. Each plot consisted of three plants grown in a 800 mL vessel containing the treatment solutions. At every three days, water consumption, the concentration of OH - and the depletion of Si and K were assessed in the nutrient solutions. After 33 days, the plants were assessed with regard to their fresh and dry weight of leaves, roots and stem, shoot height and total length of the plant (shoot and root). Number of leaves and internodes, and the content and accumulation of silicon, macro, and micronutrients were also determined. The consumption of water, the amount of potassium uptake and, biomass accumulation were greater in plants grown in solution without silicon addition. However, the concentration of OH- in the solution and the amount of silicon uptake were greater in plants grown in solution with added silicon. Silicon accumulation was greater in leaves than in stem and roots. Silicon decreased coffee plant accumulation of phosphorus, potassium, calcium, zinc, copper and iron.
Resumo:
All essential nutrients can affect the incidence and severity of plant diseases. Although silicon (Si) is not considered as an essential nutrient for plants, it stands out for its potential to decrease disease intensity in many crops. The mechanism of Si action in plant resistance is still unclear. Si deposition in plant cell walls raised the hypothesis of a possible physical barrier to pathogen penetration. However, the increased activity of phenolic compounds, polyphenol oxidases and peroxidases in plants treated with Si demonstrates the involvement of this element in the induction of plant defense responses. The studies examined in this review address the role of Si in disease control and the possible mechanisms involved in the mode of Si action in disease resistance in plants.
Resumo:
We examine the instability behavior of nanocrystalline silicon (nc-Si) thin-film transistors (TFTs) in the presence of electrical and optical stress. The change in threshold voltage and sub-threshold slope is more significant under combined bias-and-light stress when compared to bias stress alone. The threshold voltage shift (Delta V-T) after 6 h of bias stress is about 7 times larger in the case with illumination than in the dark. Under bias stress alone, the primary instability mechanism is charge trapping at the semiconductor/insulator interface. In contrast, under combined bias-and-light stress, the prevailing mechanism appears to be the creation of defect states in the channel, and believed to take place in the amorphous phase, where the increase in the electron density induced by electrical bias enhances the non-radiative recombination of photo-excited electron-hole pairs. The results reported here are consistent with observations of photo-induced efficiency degradation in solar cells.
Resumo:
Large area hydrogenated amorphous silicon single and stacked p-i-n structures with low conductivity doped layers are proposed as monochrome and color image sensors. The layers of the structures are based on amorphous silicon alloys (a-Si(x)C(1-x):H). The current-voltage characteristics and the spectral sensitivity under different bias conditions are analyzed. The output characteristics are evaluated under different read-out voltages and scanner wavelengths. To extract information on image shape, intensity and color, a modulated light beam scans the sensor active area at three appropriate bias voltages and the photoresponse in each scanning position ("sub-pixel") is recorded. The investigation of the sensor output under different scanner wavelengths and varying electrical bias reveals that the response can be tuned, thus enabling color separation. The operation of the sensor is exemplified and supported by a numerical simulation.
Resumo:
Microcrystalline silicon is a two-phase material. Its composition can be interpreted as a series of grains of crystalline silicon imbedded in an amorphous silicon tissue, with a high concentration of dangling bonds in the transition regions. In this paper, results for the transport properties of a mu c-Si:H p-i-n junction obtained by means of two-dimensional numerical simulation are reported. The role played by the boundary regions between the crystalline grains and the amorphous matrix is taken into account and these regions are treated similar to a heterojunction interface. The device is analysed under AM1.5 illumination and the paper outlines the influence of the local electric field at the grain boundary transition regions on the internal electric configuration of the device and on the transport mechanism within the mu c-Si:H intrinsic layer.
Resumo:
In the present work we investigate the ageing of acid cleaned femtosecond laser textured < 100 > silicon surfaces. Changes in the surface structure and chemistry were analysed by Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), in order to explain the variation with time of the water contact angles of the laser textured surfaces. It is shown that highly hydrophobic silicon surfaces are obtained immediately after laser texturing and cleaning with acid solutions (water contact angle >120 degrees). However these surfaces are not stable and ageing leads to a decrease of the water contact angle which reaches a value of 80 degrees. XPS analysis of the surfaces shows that the growth of the native oxide layer is most probably responsible for this behavior. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article reports on the structural, electronic, and optical properties of boron-doped hydrogenated nanocrystalline silicon (nc-Si: H) thin films. The films were deposited by plasma-enhanced chemical vapour deposition (PECVD) at a substrate temperature of 150 degrees C. Crystalline volume fraction and dark conductivity of the films were determined as a function of trimethylboron-to-silane flow ratio. Optical constants of doped and undoped nc-Si: H were obtained from transmission and reflection spectra. By employing p(+) nc-Si: H as a window layer combined with a p' a-SiC buffer layer, a-Si: H-based p-p'-i-n solar cells on ZnO:Al-coated glass substrates were fabricated. Device characteristics were obtained from current-voltage and spectral-response measurements. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
As gestantes, fruto das suas alterações fisiológicas e biomecânicas, constituem uma população de risco relativamente a dores ou lesões do sistema músculo-esquelético, nomeadamente, nos membros inferiores e coluna. Os objectivos deste estudo consistiram em avaliar: (i) a dor e o conforto dos pés durante a marcha: sem o uso de qualquer palmilha nas gestantes e no grupo de controlo; com a aplicação de uma palmilha de retropé e com a aplicação de uma palmilha completa (nas gestantes); (ii) a distribuição das pressões plantares e, (iii) as forças de reacção do solo nas mesmas condições experimentais. Avaliámos ainda a duração das diferentes fases do ciclo de marcha nas gestantes, com e sem palmilhas, e no grupo de controlo, sem o uso de palmilha. Os nossos resultados mostraram que: (i) as gestantes demoram mais tempo a completar a fase de apoio da marcha, (ii) têm um aumento significativo de dores nos pés, face ao grupo de controlo, (iii) as gestantes sentem menos dor e mais conforto quando realizam marcha, com palmilhas, especialmente com a palmilha completa, (iv) a palmilha completa redistribui as forças, diminui os valores de pressão e aumenta a área de contacto do pé com o solo. Os nossos resultados sugerem que, o uso da palmilha completa de silicone, durante a marcha, pode ser eficaz na melhoria da sintomatologia dolorosa e no aumento do conforto da grávida.
Resumo:
Toxic amides, such as acrylamide, are potentially harmful to Human health, so there is great interest in the fabrication of compact and economical devices to measure their concentration in food products and effluents. The CHEmically Modified Field Effect Transistor (CHEMFET) based onamorphous silicon technology is a candidate for this type of application due to its low fabrication cost. In this article we have used a semi-empirical modelof the device to predict its performance in a solution of interfering ions. The actual semiconductor unit of the sensor was fabricated by the PECVD technique in the top gate configuration. The CHEMFET simulation was performed based on the experimental current voltage curves of the semiconductor unit and on an empirical model of the polymeric membrane. Results presented here are useful for selection and design of CHEMFET membranes and provide an idea of the limitations of the amorphous CHEMFET device. In addition to the economical advantage, the small size of this prototype means it is appropriate for in situ operation and integration in a sensor array.
Resumo:
This paper discusses the photodiode capacitance dependence on imposed light and applied voltage using different devices. The first device is a double amorphous silicon pin-pin photodiode; the second one a crystalline pin diode and the last one a single pin amorphous silicon diode. Double amorphous silicon diodes can be used as (de)multiplexer devices for optical communications. For short range applications, using plastic optical fibres, the WDM (wavelength-division multiplexing) technique can be used in the visible light range to encode multiple signals. Experimental results consist on measurements of the photodiode capacitance under different conditions of imposed light and applied voltage. The relation between the capacitive effects of the double diode and the quality of the semiconductor internal junction will be analysed. The dynamics of charge accumulations will be measured when the photodiode is illuminated by a pulsed monochromatic light.
Resumo:
We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating. (C) 2013 Elsevier Ltd. All rights reserved.