948 resultados para EARTHQUAKE, IRREGULARITY, NONLINEARITY, STRUCTURAL RESPONSE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is a contribution to the study of laser-solid interaction. Despite the numerous applications resulting from the recent use of laser technology, there is still a lack of satisfactory answers to theoretical questions regarding the mechanism leading to the structural changes induced by femtosecond lasers in materials. We provide here theoretical approaches for the description of the structural response of different solids (cerium, samarium sulfide, bismuth and germanium) to femtosecond laser excitation. Particular interest is given to the description of the effects of the laser pulse on the electronic systems and changes of the potential energy surface for the ions. Although the general approach of laser-excited solids remains the same, the potential energy surface which drives the structural changes is calculated with different theoretical models for each material. This is due to the difference of the electronic properties of the studied systems. We use the Falicov model combined with an hydrodynamic method to study photoinduced phase changes in cerium. The local density approximation (LDA) together with the Hubbard-type Hamiltonian (LDA+U) in the framework of density functional theory (DFT) is used to describe the structural properties of samarium sulfide. We parametrize the time-dependent potential energy surface (calculated using DFT+ LDA) of bismuth on which we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent $A_{1g}$ phonons. On the basis of a time-dependent potential energy surface calculated from a non-orthogonal tight binding Hamiltonian, we perform molecular dynamics simulation to analyze the time evolution (coherent phonons, ultrafast nonthermal melting) of germanium under laser excitation. The thermodynamic equilibrium properties of germanium are also reported. With the obtained results we are able to give many clarifications and interpretations of experimental results and also make predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioremediation strategies continue to be developed to mitigate the environmental impact of petroleum hydrocarbon contamination. This study investigated the ability of soil microbiota, adapted by prior exposure, to biodegrade petroleum. Soils from Barrow Is. (W. Australia), a class A nature reserve and home to Australia’s largest onshore oil field, were exposed to Barrow production oil (50 ml/kg soil) and incubated (25 °C) for successive phases of 61 and 100 days. Controls in which oil was not added at Phase I or II were concurrently studied and all treatments were amended with the same levels of additional nutrient and water to promote microbial activity. Prior exposure resulted in accelerated biodegradation of most, but not all, hydrocarbon constituents in the production oil. Molecular biodegradation parameters measured using gas chromatography–mass spectrometry (GC–MS) showed that several aromatic constituents were degraded more slowly with increased oil history. The unique structural response of the soil microbial community was reflected by the response of different phospholipid fatty acid (PLFA) sub-classes (e.g. branched saturated fatty acids of odd or even carbon number) measured using a ratio termed Barrow PLFA ratio (B-PLFAr). The corresponding values of a previously proposed hydrocarbon degrading alteration index showed a negative correlation with hydrocarbon exposure, highlighting the site specificity of PLFA-based ratios and microbial community dynamics. B-PLFAr values increased with each Phase I and II addition of production oil. The different hydrocarbon biodegradation rates and responses of PLFA subclasses to the Barrow production oil probably relate to the relative bioavailability of production oil hydrocarbons. These different effects suggest preferred structural and functional microbial responses to anticipated contaminants may potentially be engineered by controlled pre-exposure to the same or closely related substrates. The bioremediation of soils freshly contaminated with petroleum could benefit from the addition of exhaustively bioremediated soils rich in biota primed for the impacting hydrocarbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Performance-Based Earthquake Engineering (PBEE), evaluating the seismic performance (or seismic risk) of a structure at a designed site has gained major attention, especially in the past decade. One of the objectives in PBEE is to quantify the seismic reliability of a structure (due to the future random earthquakes) at a site. For that purpose, Probabilistic Seismic Demand Analysis (PSDA) is utilized as a tool to estimate the Mean Annual Frequency (MAF) of exceeding a specified value of a structural Engineering Demand Parameter (EDP). This dissertation focuses mainly on applying an average of a certain number of spectral acceleration ordinates in a certain interval of periods, Sa,avg (T1,…,Tn), as scalar ground motion Intensity Measure (IM) when assessing the seismic performance of inelastic structures. Since the interval of periods where computing Sa,avg is related to the more or less influence of higher vibration modes on the inelastic response, it is appropriate to speak about improved IMs. The results using these improved IMs are compared with a conventional elastic-based scalar IMs (e.g., pseudo spectral acceleration, Sa ( T(¹)), or peak ground acceleration, PGA) and the advanced inelastic-based scalar IM (i.e., inelastic spectral displacement, Sdi). The advantages of applying improved IMs are: (i ) "computability" of the seismic hazard according to traditional Probabilistic Seismic Hazard Analysis (PSHA), because ground motion prediction models are already available for Sa (Ti), and hence it is possibile to employ existing models to assess hazard in terms of Sa,avg, and (ii ) "efficiency" or smaller variability of structural response, which was minimized to assess the optimal range to compute Sa,avg. More work is needed to assess also "sufficiency" and "scaling robustness" desirable properties, which are disregarded in this dissertation. However, for ordinary records (i.e., with no pulse like effects), using the improved IMs is found to be more accurate than using the elastic- and inelastic-based IMs. For structural demands that are dominated by the first mode of vibration, using Sa,avg can be negligible relative to the conventionally-used Sa (T(¹)) and the advanced Sdi. For structural demands with sign.cant higher-mode contribution, an improved scalar IM that incorporates higher modes needs to be utilized. In order to fully understand the influence of the IM on the seismis risk, a simplified closed-form expression for the probability of exceeding a limit state capacity was chosen as a reliability measure under seismic excitations and implemented for Reinforced Concrete (RC) frame structures. This closed-form expression is partuclarly useful for seismic assessment and design of structures, taking into account the uncertainty in the generic variables, structural "demand" and "capacity" as well as the uncertainty in seismic excitations. The assumed framework employs nonlinear Incremental Dynamic Analysis (IDA) procedures in order to estimate variability in the response of the structure (demand) to seismic excitations, conditioned to IM. The estimation of the seismic risk using the simplified closed-form expression is affected by IM, because the final seismic risk is not constant, but with the same order of magnitude. Possible reasons concern the non-linear model assumed, or the insufficiency of the selected IM. Since it is impossibile to state what is the "real" probability of exceeding a limit state looking the total risk, the only way is represented by the optimization of the desirable properties of an IM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]The beneficial or detrimental role of battered piles on the dynamic response of piled foundations has not been yet fully elucidated. In order to shed more light on this aspect, kinematic interaction factors of deep foundations with inclined piles, are provided for single battered piles, as well as for 2X2 and 3X3 groups of piles subjected to vertically incident plane shear S waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research performed during the PhD and presented in this thesis, allowed to make judgments on pushover analysis method about its application in evaluating the correct structural seismic response. In this sense, the extensive critical review of existing pushover procedures (illustrated in chapter 1) outlined their major issues related to assumptions and to hypothesis made in the application of the method. Therefore, with the purpose of evaluate the effectiveness of pushover procedures, a wide numerical investigation have been performed. In particular the attention has been focused on the structural irregularity on elevation, on the choice of the load vector and on its updating criteria. In the study eight pushover procedures have been considered, of which four are conventional type, one is multi-modal, and three are adaptive. The evaluation of their effectiveness in the identification of the correct dynamic structural response, has been done by performing several dynamic and static non-linear analysis on eight RC frames, characterized by different proprieties in terms of regularity in elevation. The comparisons of static and dynamic results have then permitted to evaluate the examined pushover procedures and to identify the expected margin of error by using each of them. Both on base shear-top displacement curves and on considered storey parameters, the best agreement with the dynamic response has been noticed on Multi-Modal Pushover procedure. Therefore the attention has been focused on Displacement-based Adative Pushover, coming to define for it an improvement strategy, and on modal combination rules, advancing an innovative method based on a quadratic combination of the modal shapes (QMC). This latter has been implemented in a conventional pushover procedure, whose results have been compared with those obtained by other multi-modal procedures. The development of research on pushover analysis is very important because the objective is to come to the definition of a simple, effective and reliable analysis method, indispensable tool in the seismic evaluation of new or existing structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bridges with deck supported on either sliding or elastomeric bearings are very common in mid-seismicity regions. Their main seismic vulnerabilities are related to the pounding of the deck against abutments or between the different deck elements. A simplified model of the longitudinal behavior of those bridges will allow to characterize the reaction forces developed during pounding using the Pacific Earthquake Engineering Research Center framework formula. In order to ensure the general applicability of the results obtained, a large number of system parameter combinations will be considered. The heart of the formula is the identification of suitable intermediate variables. First, the pseudo acceleration spectral value for the fundamental period of the system (Sa(Ts)) will be used as an intensity measure (IM). This IM will result in a very large non-explained variability of the engineering demand parameter. A portion of this variability will be proved to be related to the relative content of high-frequency energy in the input motion. Two vector-valued IMs including a second parameter taking this energy content into account will then be considered. For both of them, a suitable form for the conditional intensity dependence of the response will be obtained. The question of which one to choose will also be analyzed. Finally, additional issues related to the IM will be studied: its applicability to pulse-type records, the validity of scaling records and the sufficiency of the IM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the seismic analysis of a deeply embedded non-slender structure hosting the pumping unit of a reservoir. The dynamic response in this type of problems is usually studied under the assumption of a perfectly rigid structure using a sub-structuring procedure (three-step solution) proposed specifically for this hypothesis. Such an approach enables a relatively simple assessment of the importance of some key factors influencing the structural response. In this work, the problem is also solved in a single step using a direct approach in which the structure and surrounding soil are modelled as a coupled system with its actual geometry and flexibility. Results indicate that, quite surprisingly, there are significant differences among prediction using both methods. Furthermore, neglecting the flexibility of the structure leads to a significant underestimation of the spectral accelerations at certain points of the structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies have been developed to analyze the structural seismic behavior through the damage index concept. The evaluation of this index has been employed to quantify the safety of new and existing structures and, also, to establish a framework for seismic retrofitting decision making of structures. Most proposed models are based in a posterthquake evaluation in such a way they uncouple the structural response from the damage evaluation. In this paper, a generalization of the model by Flórez-López (1995) is proposed. The formulation employs irreversible thermodynamics and internal state variable theory applied to the study of beams and frames and it allows and explicit coupling between the degradation and the structural mechanical behavior. A damage index es defined in order to model elastoplasticity coupled with damage and fatigue damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years many studies have been developed to analyze the seismic behavior throug the damage concept. In fact, the evaluation of the structural damage is important in order to quantify the safety of new and existing structures and, also, to establish a framework for seismic retrofitting decision making of structures. Most proposed models are based on a post-earthquake evaluation in such a way they uncouple the computation of the structural response from that of damage. However, there are other models which include explicity the existing coupling between the degradation and the structural mechanical beaviour. Those models are closer to the physical reality and its formulation is based on the principles of Continuum Damage Mechanics. In the present work, a coupled model is formulated using a simplified application of the Continuum Damage Mechanics to the analysis of frames and allows its representation in standard finite element programs. This work is part of the activities developed by the Structural Mechanics Department (UPM) within ICONS (European Research Project on Innovative Seismic Design Concepts for New and Existing Structures).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If reinforced concrete structures are to be safe under extreme impulsive loadings such as explosions, a broad understanding of the fracture mechanics of concrete under such events is needed. Most buildings and infrastructures which are likely to be subjected to terrorist attacks are borne by a reinforced concrete (RC) structure. Up to some years ago, the traditional method used to study the ability of RC structures to withstand explosions consisted on a choice between handmade calculations, affordable but inaccurate and unreliable, and full scale experimental tests involving explosions, expensive and not available for many civil institutions. In this context, during the last years numerical simulations have arisen as the most effective method to analyze structures under such events. However, for accurate numerical simulations, reliable constitutive models are needed. Assuming that failure of concrete elements subjected to blast is primarily governed by the tensile behavior, a constitutive model has been built that accounts only for failure under tension while it behaves as elastic without failure under compression. Failure under tension is based on the Cohesive Crack Model. Moreover, the constitutive model has been used to simulate the experimental structural response of reinforced concrete slabs subjected to blast. The results of the numerical simulations with the aforementioned constitutive model show its ability of representing accurately the structural response of the RC elements under study. The simplicity of the model, which does not account for failure under compression, as already mentioned, confirms that the ability of reinforced concrete structures to withstand blast loads is primarily governed by tensile strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical analysis is a suitable tool in the design of complex reinforced concrete structures under extreme impulsive loadings such as impacts or explosions at close range. Such events may be the result of terrorist attacks. Reinforced concrete is commonly used for buildings and infrastructures. For this reason, the ability to accurately run numerical simulations of concrete elements subjected to blast loading is needed. In this context, reliable constitutive models for concrete are of capital importance. In this research numerical simulations using two different constitutive models for concrete (Continuous Surface Cap Model and Brittle Damage Model) have been carried out using LS-DYNA. Two experimental benchmark tests have been taken as reference. The results of the numerical simulations with the aforementioned constitutive models show different abilities to accurately represent the structural response of the reinforced concrete elements studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Civil buildings are not specifically designed to support blast loads, but it is important to take into account these potential scenarios because of their catastrophic effects, on persons and structures. A practical way to consider explosions on reinforced concrete structures is necessary. With this objective we propose a methodology to evaluate blast loads on large concrete buildings, using LS-DYNA code for calculation, with Lagrangian finite elements and explicit time integration. The methodology has three steps. First, individual structural elements of the building like columns and slabs are studied, using continuum 3D elements models subjected to blast loads. In these models reinforced concrete is represented with high precision, using advanced material models such as CSCM_CONCRETE model, and segregated rebars constrained within the continuum mesh. Regrettably this approach cannot be used for large structures because of its excessive computational cost. Second, models based on structural elements are developed, using shells and beam elements. In these models concrete is represented using CONCRETE_EC2 model and segregated rebars with offset formulation, being calibrated with continuum elements models from step one to obtain the same structural response: displacement, velocity, acceleration, damage and erosion. Third, models basedon structural elements are used to develop large models of complete buildings. They are used to study the global response of buildings subjected to blast loads and progressive collapse. This article carries out different techniques needed to calibrate properly the models based on structural elements, using shells and beam elements, in order to provide results of sufficient accuracy that can be used with moderate computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are significant levels of concern about the relevance and the difficulty of learning some issues on Strength of Materials and Structural Analysis. Most students of Continuum Mechanics and Structural Analysis in Civil Engineering usually point out some key learning aspects as especially difficult for acquiring specific skills. These key concepts entail comprehension difficulties but ease access and applicability to structural analysis in more advanced subjects. Likewise, some elusive but basic structural concepts, such as flexibility, stiffness or influence lines, are paramount for developing further skills required for advanced structural design: tall buildings, arch-type structures as well as bridges. As new curricular itineraries are currently being implemented, it appears appropriate to devise a repository of interactive web-based applications for training in those basic concepts. That will hopefully train the student to understand the complexity of such concepts, to develop intuitive knowledge on actual structural response and to improve their preparation for exams. In this work, a web-based learning assistant system for influence lines on continuous beams is presented. It consists of a collection of interactive user-friendly applications accessible via Web. It is performed in both Spanish and English languages. Rather than a “black box” system, the procedure involves open interaction with the student, who can simulate and virtually envisage the structural response. Thus, the student is enabled to set the geometric, topologic and mechanic layout of a continuous beam and to change or shift the loading and the support conditions. Simultaneously, the changes in the beam response prompt on the screen, so that the effects of the several issues involved in structural analysis become apparent. The system is performed through a set of web pages which encompasses interactive exercises and problems, written in JavaScript under JQuery and DyGraphs frameworks, given that their efficiency and graphic capabilities are renowned. Students can freely boost their self-study on this subject in order to face their exams more confidently. Besides, this collection is expected to be added to the "Virtual Lab of Continuum Mechanics" of the UPM, launched in 2013 (http://serviciosgate.upm.es/laboratoriosvirtuales/laboratorios/medios-continuos-en-construcci%C3%B3n)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a project for providing the students of Structural Engineering with the flexibility to learn outside classroom schedules. The goal is a framework for adaptive E-learning based on a repository of open educational courseware with a set of basic Structural Engineering concepts and fundamentals. These are paramount for students to expand their technical knowledge and skills in structural analysis and design of tall buildings, arch-type structures as well as bridges. Thus, concepts related to structural behaviour such as linearity, compatibility, stiffness and influence lines have traditionally been elusive for students. The objective is to facilitate the student a teachinglearning process to acquire the necessary intuitive knowledge, cognitive skills and the basis for further technological modules and professional development in this area. As a side effect, the system is expected to help the students improve their preparation for exams on the subject. In this project, a web-based open-source system for studying influence lines on continuous beams is presented. It encompasses a collection of interactive user-friendly applications accessible via Web, written in JavaScript under JQuery and Dygraph Libraries, taking advantage of their efficiency and graphic capabilities. It is performed in both Spanish and English languages. The student is enabled to set the geometric, topologic, boundary and mechanic layout of a continuous beam. While changing the loading and the support conditions, the changes in the beam response prompt on the screen, so that the effects of the several issues involved in structural analysis become apparent. This open interaction with the user allows the student to simulate and virtually infer the structural response. Different levels of complexity can be handled, whereas an ongoing help is at hand for any of them. Students can freely boost their experiential learning on this subject at their own pace, in order to further share, process, generalize and apply the relevant essential concepts of Structural Engineering analysis. Besides, this collection is being added to the "Virtual Lab of Continuum Mechanics" of the UPM, launched in 2013 (http://serviciosgate.upm.es/laboratoriosvirtuales/laboratorios/medios-continuos-en-construcci%C3%B3n)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The French CEA, together with EDF and the IAEA, recently organised an international benchmark to evaluate the ability to model the mechanical behaviour of a typical nuclear reinforced concrete structure subjected to seismic demands. The participants were provided with descriptions of the structure and the testing campaign; they had to propose the numerical model and the material laws for the concrete (stage #1). A mesh of beam and shell elements was generated; for modelling the concrete a damaged plasticity model was used, but a smeared crack model was also investigated. Some of the initial experimental results, with the mock-up remaining in the elastic range, were provided to the participants for calibrating their models (stage #2). Predictions had to be produced in terms of eigen-frequencies and motion time histories. The calculated frequencies reproduced reasonably the experimental ones; the time histories, calculated by modal response analysis, also reproduced adequately the observed amplifications. The participants were then expected to predict the structural response under strong ground motions (stage #3), which increased progressively up to a history recorded during the 1994 Northridge earthquake, followed by an aftershock. These results were produced using an explicit solver and a damaged plasticity model for the concrete, although an implicit solver with a smeared crack model was also investigated. The paper presents the conclusions of the pre-test exercise, as well as some observations from additional simulations conducted after the experimental results were made available.