992 resultados para Dynamic geometry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new geometry-independent state - a traveling-wave wall state - is proposed as the mechanism whereby which the experimentally observed wall-localized states in rotating Rayleigh-Bénard convection systems preempt the bulk state at large rotation rates. Its properties are calculated for the illustrative case of free-slip top and bottom boundary conditions. At small rotation rates, this new wall state is found to disappear. A detailed study of the dynamics of the wall state and the bulk state in the transition region where this disappearance occurs is conducted using a Swift-Hohenberg model system. The Swift-Hohenberg model, with appropriate reflection-symmetry- breaking boundary conditions, is also shown to exhibit traveling-wave wall states, further demonstrating that traveling-wave wall states are a generic feature of nonequilibrium pattern-forming systems. A numerical code for the Swift-Hohenberg model in an annular geometry was written and used to investigate the dynamics of rotating Rayleigh-Bénard convection systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique presented in this paper enables a simple, accurate and unbiased measurement of hand stiffness during human arm movements. Using a computer-controlled mechanical interface, the hand is shifted relative to a prediction of the undisturbed trajectory. Stiffness is then computed as the restoring force divided by the position amplitude of the perturbation. A precise prediction algorithm insures the measurement quality. We used this technique to measure stiffness in free movements and after adaptation to a linear velocity dependent force field. The subjects compensated for the external force by co-contracting muscles selectively. The stiffness geometry changed with learning and stiffness tended to increase in the direction of the external force.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimization of the bandwidth of a 2 km 50 μm multimode fiber at 850 nm is investigated theoretically and experimentally by steering a single spot, or two in antiphase spots across the core of the fiber in two dimensions using a ferroelectric liquid-crystal-based spatial light modulator. This method not only allows an optimal offset launch position to be chosen in situ but can also characterize the geometry and position of the core, identify defects, and measure the maximum differential mode delay. Its ability to selectively excite specific mode groups is also of relevance to mode-group division multiplexing. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the difficulties in model testing deepwater structures at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation. Passive truncation has traditionally been the preferred method by industry; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. Vibration decay of transverse elastic waves due to fluid drag forces is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Initially a simplified taut string model is assumed for which the line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a general guideline for the truncation length criterion, which is suitable for any kind of line with any top motion. The focus of this paper is to extend this work to a more complex line configuration of a conventional deepwater mooring line and so enhance the generality of the truncation guideline. The paper will close with an example case study of a spread mooring system, applying this method to create an equivalent numerical model at a reduced depth that replicates exactly the static and dynamic characteristics of the full depth system. Copyright © 2012 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the light of descriptive geometry and notions in set theory, this paper re-defines the basic elements in space such as curve and surface and so on, presents some fundamental notions with respect to the point cover based on the High-dimension space (HDS) point covering theory, finally takes points from mapping part of speech signals to HDS, so as to analyze distribution information of these speech points in HDS, and various geometric covering objects for speech points and their relationship. Besides, this paper also proposes a new algorithm for speaker independent continuous digit speech recognition based on the HDS point dynamic searching theory without end-points detection and segmentation. First from the different digit syllables in real continuous digit speech, we establish the covering area in feature space for continuous speech. During recognition, we make use of the point covering dynamic searching theory in HDS to do recognition, and then get the satisfying recognized results. At last, compared to HMM (Hidden Markov models)-based method, from the development trend of the comparing results, as sample amount increasing, the difference of recognition rate between two methods will decrease slowly, while sample amount approaching to be very large, two recognition rates all close to 100% little by little. As seen from the results, the recognition rate of HDS point covering method is higher than that of in HMM (Hidden Markov models) based method, because, the point covering describes the morphological distribution for speech in HDS, whereas HMM-based method is only a probability distribution, whose accuracy is certainly inferior to point covering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational modelling of dynamic fluid–structure interaction (DFSI) is a considerable challenge. Our approach to this class of problems involves the use of a single software framework for all the phenomena involved, employing finite volume methods on unstructured meshes in three dimensions. This method enables time and space accurate calculations in a consistent manner. One key application of DFSI simulation is the analysis of the onset of flutter in aircraft wings, where the work of Yates et al. [Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45° degree Sweptback Wing Planform in Air and Freon-12 in the Langley Transonic Dynamic Tunnel. NASA Technical Note D-1616, 1963] on the AGARD 445.6 wing planform still provides the most comprehensive benchmark data available. This paper presents the results of a significant effort to model the onset of flutter for the AGARD 445.6 wing planform geometry. A series of key issues needs to be addressed for this computational approach. • The advantage of using a single mesh, in order to eliminate numerical problems when applying boundary conditions at the fluid-structure interface, is counteracted by the challenge of generating a suitably high quality mesh in both the fluid and structural domains. • The computational effort for this DFSI procedure, in terms of run time and memory requirements, is very significant. Practical simulations require even finer meshes and shorter time steps, requiring parallel implementation for operation on large, high performance parallel systems. • The consistency and completeness of the AGARD data in the public domain is inadequate for use in the validation of DFSI codes when predicting the onset of flutter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melting of metallic samples in a cold crucible causes inclusions to concentrate on the surface owing to the action of the electromagnetic force in the skin layer. This process is dynamic, involving the melting stage, then quasi-stationary particle separation, and finally the solidification in the cold crucible. The proposed modeling technique is based on the pseudospectral solution method for coupled turbulent fluid flow, thermal and electromagnetic fields within the time varying fluid volume contained by the free surface, and partially the solid crucible wall. The model uses two methods for particle tracking: (1) a direct Lagrangian particle path computation and (2) a drifting concentration model. Lagrangian tracking is implemented for arbitrary unsteady flow. A specific numerical time integration scheme is implemented using implicit advancement that permits relatively large time-steps in the Lagrangian model. The drifting concentration model is based on a local equilibrium drift velocity assumption. Both methods are compared and demonstrated to give qualitatively similar results for stationary flow situations. The particular results presented are obtained for iron alloys. Small size particles of the order of 1 μm are shown to be less prone to separation by electromagnetic field action. In contrast, larger particles, 10 to 100 μm, are easily “trapped” by the electromagnetic field and stay on the sample surface at predetermined locations depending on their size and properties. The model allows optimization for melting power, geometry, and solidification rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel framework for dense pixel matching based on dynamic programming is introduced. Unlike most techniques proposed in the literature, our approach assumes neither known camera geometry nor the availability of rectified images. Under such conditions, the matching task cannot be reduced to finding correspondences between a pair of scanlines. We propose to extend existing dynamic programming methodologies to a larger dimensional space by using a 3D scoring matrix so that correspondences between a line and a whole image can be calculated. After assessing our framework on a standard evaluation dataset of rectified stereo images, experiments are conducted on unrectified and non-linearly distorted images. Results validate our new approach and reveal the versatility of our algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual Telepresence system which utilize virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the display is fixed and is most suitable only for viewing elements of a scene at a particular distance. In such a system, the operator's ability to gaze around without use of head movement is severely limited. A trade off must be made between a poor viewing resolution or a narrow width of viewing field. To address these limitations a prototype system where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator has been developed. This paper explores the reasons why is necessary to actively adjust both the display system and the cameras and furthermore justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms, An assessment of the performance of the system against a fixed camera/display system when operators are assigned basic tasks involving depth and distance/size perception. The sensitivity to variations in transient performance of the display and camera vergence is also assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents experimental and computational results obtained on the Ford Barra 190 4.0 litres I6 gasoline engine and on the Ford Falcon car equipped with this engine. Measurements of steady engine performance, fuel consumption and exhaust emissions were first collected using an automated test facility for a wide range of cam and spark timings vs. throttle position and engine speed. Simulations were performed for a significant number of measured operating points at full and part load by using a coupled Gamma Technologies GT-POWER/GT-COOL engine model for gas exchange, combustion and heat transfer. The fluid model was made up of intake and exhaust systems, oil circuit, coolant circuit and radiator cooling air circuit. The thermal model was made up of finite element components for cylinder head, cylinder, piston, valves and ports and wall thermal masses for pipes. The model was validated versus measured steady state air and fuel flow rates, cylinder pressure parameters, indicated and brake mean effective pressures, and temperature of metal, oil and coolant in selected locations. Computational results agree well with experiments, demonstrating the ability of the approach to produce fairly accurate steady state maps of BMEP and BSFC, as well as to optimize engine operation changing geometry, throttle position, cam and spark timing. Measurements of the transient performance and fuel consumption of the full vehicle were then collected over the NEDC cycle. Simulations were performed by using a coupled Gamma Technologies GT-POWER/GT-COOL/GT-DRIVE model for instantaneous engine gas exchange, combustion and heat transfer and vehicle motion. The full vehicle model is made up of transmission, driveshaft, axles, and car components and the previous engine model. The model was validated with measured fuel flow rates through the engine, engine throttle position, and engine speed and oil and coolant temperatures in selected locations. Instantaneous engine states following a time dependent demand for torque and speed differ from those obtained by interpolating steady state maps of BSFC vs. BMEP and speed. Computational results agree well with experiments, demonstrating the utility of the approach in providing a more accurate prediction of the fuel consumption over test cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone is known to adapt to the prevalent strain environment while the variation in strains, e.g., due to mechanical loading, modulates bone remodeling, and modeling. Dynamic strains rather than static strains provide the primary stimulus of bone functional adaptation. The finite element method can be generally used for estimating bone strains, but it may be limited to the static analysis of bone strains since the dynamic analysis requires expensive computation. Direct in vivo strain measurement, in turn, is an invasive procedure, limited to certain superficial bone sites, and requires surgical implementation of strain gauges and thus involves risks (e.g., infection). Therefore, to overcome difficulties associated with the finite element method and the in vivo strain measurements, the flexible multibody simulation approach has been recently introduced as a feasible method to estimate dynamic bone strains during physical activity. The purpose of the present study is to further strengthen the idea of using the flexible multibody approach for the analysis of dynamic bone strains. Besides discussing the background theory, magnetic resonance imaging is integrated into the flexible multibody approach framework so that the actual bone geometry could be better accounted for and the accuracy of prediction improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the dynamic behaviour of the "click" mechanism is analysed. A more accurate model is used than in the past, in which the limits of movement due to the geometry of the flight mechanism are imposed. Moreover, the effects of different damping models are investigated. In previous work, the damping model was assumed to be of the linear viscous type for simplicity, but it is likely that the damping due to drag forces is nonlinear. Accordingly, a model of damping in which the damping force is proportional to the square of the velocity is used, and the results are compared with the simpler model of linear viscous damping. Because of the complexity of the model an analytical approach is not possible so the problem has been cast in terms of non-dimensional variables and solved numerically. The peak kinetic energy of the wing root per energy input in one cycle is chosen to study the effectiveness of the "click" mechanism compared with a linear resonant mechanism. It is shown that, the "click" mechanism has distinct advantages when it is driven below its resonant frequency. When the damping is quadratic, there are some further advantages compared to when the damping is linear and viscous, provided that the amplitude of the excitation force is large enough to avoid the erratic behaviour of the mechanism that occurs for small forces. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]An analysis of the influence that reservoir levels and bottom sediment properties (especially on the degree of saturation) have on the dynamic response of arch dams is caried out. For this purpose, a Boundary Element Model developed by the authors that allows the direct dynamic study of problems that incorporate scalar, viscoelastic and poroelastic media is used.