691 resultados para Dorsoventral patterning
Resumo:
The control of semi-crystalline polymers in thin films and in micrometer-sized patterns is attractive for (opto-)electronic applications. Electro-hydrodynamic lithography (EHL) enables the structure formation of organic crystalline materials on the micrometer length scale while at the same time exerting control over crystal orientation. This gives rise to well-defined micro-patterned arrays of uniaxially aligned polymer crystals. This study explores the interplay of EHL structure formation with crystal alignment and studies the mechanisms that give rise to crystal orientation in EHL-generated structures.
Resumo:
Recent development of solution processable organic semiconductors delineates the emergence of a new generation of air-stable, high performance p- and n-type materials. This makes it indeed possible for printed organic complementary circuits (CMOS) to be used in real applications. The main technical bottleneck for organic CMOS to be adopted as the next generation organic integrated circuit is how to deposit and pattern both p- and n-type semiconductor materials with high resolutions at the same time. It represents a significant technical challenge, especially if it can be done for multiple layers without mask alignment. In this paper, we propose a one-step self-aligned fabrication process which allows the deposition and high resolution patterning of functional layers for both p- and n-channel thin film transistors (TFTs) simultaneously. All the dimensional information of the device components is featured on a single imprinting stamp, and the TFT-channel geometry, electrodes with different work functions, p- and n-type semiconductors and effective gate dimensions can all be accurately defined by one-step imprinting and the subsequent pattern transfer process. As an example, we have demonstrated an organic complementary inverter fabricated by 3D imprinting in combination with inkjet printing and the measured electrical characteristics have validated the feasibility of the novel technique. © 2012 Elsevier B.V. All rights reserved.
Resumo:
A method of creating micro patterned devices by patterning thin films which are deposited on a substrate. A channel or channels is created on the substrate, the width being of fine enough resolution such that a flowable mask material can be drawn along the channel by capillary forces
Resumo:
A method of patterning a flowable material on a surface, the method comprising providing the surface with at least one channel and at least one through- hole with at least two openings, wherein at least one of the openings is located in the surface adjacent to the at least one channel, such that when flowable material is deposited adjacent to another of the at least two openings, the material is directed into the at least one through-hole by the action of capillary forces and emerges at the opening adjacent to the at least one channel whereupon it is further directed along said channel.
Resumo:
Electron and hole conducting 10-nm-wide polymer morphologies hold great promise for organic electro-optical devices such as solar cells and light emitting diodes. The self-assembly of block-copolymers (BCPs) is often viewed as an efficient way to generate such materials. Here, a functional block copolymer that contains perylene bismide (PBI) side chains which can crystallize via π-π stacking to form an electron conducting microphase is patterned harnessing hierarchical electrohydrodynamic lithography (HEHL). HEHL film destabilization creates a hierarchical structure with three distinct length scales: (1) micrometer-sized polymer pillars, containing (2) a 10-nm BCP microphase morphology that is aligned perpendicular to the substrate surface and (3) on a molecular length scale (0.35-3 nm) PBI π-π-stacks traverse the HEHL-generated plugs in a continuous fashion. The good control over BCP and PBI alignment inside the generated vertical microstructures gives rise to liquid-crystal-like optical dichroism of the HEHL patterned films, and improves the electron conductivity across the film by 3 orders of magnitude. © 2013 American Chemical Society.
Resumo:
We present a novel method for controlling the growth orientation of individual carbon nanotube (CNT) microstructures on a silicon wafer substrate. Our method controls the CNT forest orientation by patterning the catalyst layer used in the CNTs growth on slanted KOH edges. The overlap of catalyst area on the horizontal bottom and sloped sidewall surfaces of the KOH-etched substrate enables precise variation of the growth direction. These inclined structures can profit from the outstanding mechanical, electrical, thermal, and optical properties of CNTs and can therefore improve the performance of several MEMS devices. Inclined CNT microstructures could for instance be used as cantilever springs in probe card arrays, as tips in dip-pen lithography, and as sensing element in advanced transducers. ©2009 IEEE.
Resumo:
We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices. © 2013 American Chemical Society.
Resumo:
Picosecond pulsed laser (10.4 ps, 1064 nm, 5 and 50 kHz) patterning studies were performed, of PEDOT:PSS thin films of varying thickness deposited by spin coating on glass substrates, by ablating the films or by changing locally by laser irradiation the optical and electrical properties of the polymer. From a detailed observation of the morphology of single pulse ablated holes on the surfaces of the films, in combination with simple calculations, it is concluded that photomechanical ablation is the likely ablation mechanism of the films. The single pulse ablation thresholds were measured equal to 0.13-0.18 J/cm 2 for films with thicknesses in the region of ∼100-600 nm. The implications on ablation line patterning of the films using different fluences, scanning speeds and pulse repetition rates, were investigated systematically. Laser irradiation of the films before ablation induces a metal-insulator transition of the polymer because of the formation of charge localization due to a possible creation of molecular disorder in the polymer and shortening of its conjugation length. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Cellular behavior is strongly influenced by the architecture and pattern of its interfacing extracellular matrix (ECM). For an artificial culture system which could eventually benefit the translation of scientific findings into therapeutic development, the system should capture the key characteristics of a physiological microenvironment. At the same time, it should also enable standardized, high throughput data acquisition. Since an ECM is composed of different fibrous proteins, studying cellular interaction with individual fibrils will be of physiological relevance. In this study, we employ near-field electrospinning to create ordered patterns of collagenous fibrils of gelatin, based on an acetic acid and ethyl acetate aqueous co-solvent system. Tunable conformations of micro-fibrils were directly deposited onto soft polymeric substrates in a single step. We observe that global topographical features of straight lines, beads-on-strings, and curls are dictated by solution conductivity; whereas the finer details such as the fiber cross-sectional profile are tuned by solution viscosity. Using these fibril constructs as cellular assays, we study EA.hy926 endothelial cells' response to ROCK inhibition, because of ROCK's key role in the regulation of cell shape. The fibril array was shown to modulate the cellular morphology towards a pre-capillary cord-like phenotype, which was otherwise not observed on a flat 2-D substrate. Further facilitated by quantitative analysis of morphological parameters, the fibril platform also provides better dissection in the cells' response to a H1152 ROCK inhibitor. In conclusion, the near-field electrospun fibril constructs provide a more physiologically-relevant platform compared to a featureless 2-D surface, and simultaneously permit statistical single-cell image cytometry using conventional microscopy systems. The patterning approach described here is also expected to form the basics for depositing other protein fibrils, seen among potential applications as culture platforms for drug screening.
Resumo:
Photonic crystal devices with feature sizes of a few hundred nanometers are often fabricated by electron beam lithography. The proximity effect, stitching error and resist profiles have significant influence on the pattern quality, and therefore determine the optical properties of the devices. In this paper, detailed analyses and simple solutions to these problems are presented. The proximity effect is corrected by the introduction of a compensating dose. The influence of the stitching error is alleviated by replacing the original access waveguides with taper-added waveguides, and the taper parameters are also discussed to get the optimal choice. It is demonstrated experimentally that patterns exposed with different doses have almost the same edge-profiles in the resist for the same development time, and that optimized etching conditions can improve the wall angle of the holes in the substrate remarkably. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We present an all-e-beam lithography (EBL) process for the patterning of photonic crystal waveguides.The whole device structures are exposed in two steps. Holes constituting the photonic crystal lattice and defects are first exposed with a small exposure step size (less than 10nm). With the introduction of the additional proximity effect to compensate the original proximity effect, the shape, size, and position of the holes can be well controlled.The second step is the exposure of the access waveguides at a larger step size (about 30nm) to improve the scan speed of the EBL. The influence of write-field stitching error can be alleviated by replacing the original waveguides with tapered waveguides at the joint of adjacent write-fields. It is found experimentally that a higher exposure efficiency is achieved with a larger step size;however,a larger step size requires a higher dose.