985 resultados para Disordered systems
Resumo:
Monte Carlo calculations of the nuclear magnetic relaxation rate in a disordered metal–hydrogen system having a distribution of jump rates are reported. The calculations deal specifically with the spin-locked rotating-frame relaxation time T1ρ. The results demonstrate that the temperature variation of the rate is only weakly dependent on the distribution and it is therefore unlikely that the jump rate distribution can be extracted from relaxation measurements in which temperature is the main variable. It is shown that the alternative of measuring the relaxation rate over a wide range of spin-locking field strengths at a constant temperature can lead to an evaluation of the distribution.
Neutron quasi-elastic scattering in disordered solids: a Monte Carlo study of metal-hydrogen systems
Resumo:
The dynamic structure factor of neutron quasi-elastic scattering has been calculated by Monte Carlo methods for atoms diffusing on a disordered lattice. The disorder includes not only variation in the distances between neighbouring atomic sites but also variation in the hopping rate associated with each site. The presence of the disorder, particularly the hopping rate disorder, causes changes in the time-dependent intermediate scattering function which translate into a significant increase in the intensity in the wings of the quasi-elastic spectrum as compared with the Lorentzian form. The effect is particularly marked at high values of the momentum transfer and at site occupancies of the order of unity. The MC calculations demonstrate how the degree of disorder may be derived from experimental measurements of the quasi-elastic scattering. The model structure factors are compared with the experimental quasi-elastic spectrum of an amorphous metal-hydrogen alloy.
Resumo:
We have studied the transport properties of disordered one-dimensional two-band systems. The model includes a narrow d band hybridised with an s band. The Landauer formula was used in the case of a very narrow d band or in the case of short chains. The results were compared with the localisation length of the wavefunctions calculated by the transfer matrix method, which allows the use of very lang chains, and an excellent agreement was obtained.
Resumo:
The effect of tunnel junction resistances on the electronic property and the magneto-resistance of few-layer graphene sheet networks is investigated. By decreasing the tunnel junction resistances, transition from strong localization to weak localization occurs and magneto-resistance changes from positive to negative. It is shown that the positive magneto-resistance is due to Zeeman splitting of the electronic states at the Fermi level as it changes with the bias voltage. As the tunnel junction resistances decrease, the network resistance is well described by 2D weak localization model. Sensitivity of the magneto-resistance to the bias voltage becomes negligible and diminishes with increasing temperature. It is shown 2D weak localization effect mainly occurs inside of the few-layer graphene sheets and the minimum temperature of 5 K in our experiments is not sufficiently low to allow us to observe 2D weak localization effect of the networks as it occurs in 2D disordered metal films. Furthermore, defects inside the few-layer graphene sheets have negligible effect on the resistance of the networks which have small tunnel junction resistances between few-layer graphene sheets
Resumo:
We discuss the effect of fluctuations of the random potential in directions transverse to the current flow in a modified Migdal-Kadanoff approach to probabilistic scaling of conductance with size L, in d-dimensional metallic systems. The conductance cumulants are finite and vary as Ld−1−n for n greater-or-equal, slanted 2 i.e. conductance fluctuations are constant for d = 3. The mean conductance has a non-classical correction with Image Full-size image (<1K) for d greater-or-equal, slanted 2. The form of the higher cumulants is strongly influenced by the transverse potential fluctuations and may be compared with the results of perturbative diagrammatic approaches.
Resumo:
We present a theory of multichannel disordered conductors by directly studying the statistical distribution of the transfer matrix for the full system. The theory is based on the general properties of the scattering system: flux conservation, time-reversal invariance, and the appropriate combination requirement when two wires are put together. The distribution associated with systems of very small length is then selected on the basis of a maximum-entropy criterion; a fixed value is assumed for the diffusion coefficient that characterizes the evolution of the distribution as the length increases. We obtain a diffusion equation for the probability distribution and compute the average of a few relevant quantities.
Resumo:
Spectroscopy can provide valuable information on the structure of disordered matter beyond that which is available through e.g. x-ray and neutron diffraction. X-ray Raman scattering is a non-resonant element-sensitive process which allows bulk-sensitive measurements of core-excited spectra from light-element samples. In this thesis, x-ray Raman scattering is used to study the local structure of hydrogen-bonded liquids and solids, including liquid water, a series of linear and branched alcohols, and high-pressure ice phases. Connecting the spectral features to the local atomic-scale structure involves theoretical references, and in the case of hydrogen-bonded systems the interpretation of the spectra is currently actively debated. The systematic studies of the intra- and intermolecular effects in alcohols, non-hydrogen-bonded neighbors in high-pressure ices, and the effect of temperature in liquid water are used to demonstrate different aspects of the local structure that can influence the near-edge spectra. Additionally, the determination of the extended x-ray absorption fine structure is addressed in a momentum-transfer dependent study. This work demonstrates the potential of x-ray Raman scattering for unique studies of the local structure of a variety of disordered light-element systems.
Resumo:
The shear alignment of an initially disordered lamellar phase is examined using lattice Boltzmann simulations of a mesoscopic model based on a free-energy functional for the concentration modulation. For a small shear cell of width 8 lambda, the qualitative features of the alignment process are strongly dependent on the Schmidt number Sc = nu/D (ratio of kinematic viscosity and mass diffusion coefficient). Here, lambda is the wavelength of the concentration modulation. At low Schmidt number, it is found that there is a significant initial increase in the viscosity, coinciding with the alignment of layers along the extensional axis, followed by a decrease at long times due to the alignment along the flow direction. At high Schmidt number, alignment takes place due to the breakage and reformation of layers because diffusion is slow compared to shear deformation; this results in faster alignment. The system size has a strong effect on the alignment process; perfect alignment takes place for a small systems of width 8 lambda and 16 lambda, while a larger system of width 32 lambda does not align completely even at long times. In the larger system, there appears to be a dynamical steady state in which the layers are not perfectly aligned-where there is a balance between the annealing of defects due to shear and the creation due to an instability of the aligned lamellar phase under shear. We observe two types of defect creation mechanisms: the buckling instability under dilation, which was reported earlier, as well as a second mechanism due to layer compression.
Resumo:
The synthesis, structure and magnetic properties of mixed-metal oxides of ABO(3) composition in the La-B-V-O (B = Ni, Cu) systems are described in the present paper. While the B = Ni oxides adopt GdFeO3-like perovskite structure containing disordered nickel and vanadium at the octahedral B site, La3Cu2VO9 crystallizes in a YAlO3-type structure. A detailed investigation of the superstructure of nominal La3Cu2VO9 by WDS analysis and Rietveld refinement of powder XRD data reveal that the likely composition of the phase is La13Cu9V4O38.5, where the Cu and V atoms are ordered in a root13a(h) (a(h) = hexagonal a parameter of YAlO3-like subcell) superstructure. Magnetic susceptibility data support the proposed superstructure consisting of triangular Cu-3 clusters. At low temperatures, the magnetic moment corresponds to S = 1/2 per Cu-3 cluster, while at high temperatures the behavior is Curie-Weiss like, showing S = 1/2 per copper. The present work reveals the contrasting behavior of La-Cu-V-O and La-Ni-V-O systems: while a unique line-phase related to YAlO3 structure is formed around La3Cu2VO9 Composition in the copper system, a continuous series of perovskite-GdFeO3 solid solutions, LaNi1-xVxO3 for 0 less than or equal to x less than or equal to 1/3 seems to be obtained in the nickel system, where the oxidation state of nickel varies from 3+ to 2+.
Resumo:
We study melting of a face-centered crystalline solid consisting of polydisperse Lennard-Jones spheres with Gaussian polydispersity in size. The phase diagram reproduces the existence of a nearly temperature invariant terminal polydispersity (delta(t) similar or equal to 0.11), with no signature of reentrant melting. The absence of reentrant melting can be attributed to the influence of the attractive part of the potential upon melting. We find that at terminal polydispersity the fractional density change approaches zero, which seems to arise from vanishingly small compressibility of the disordered phase. At constant temperature and volume fraction the system undergoes a sharp transition from crystalline solid to the disordered amorphous or fluid state with increasing polydispersity. This has been quantified by second- and third-order rotational invariant bond orientational order, as well as by the average inherent structure energy. The translational order parameter also indicates a similar sharp structural change at delta similar or equal to 0.09 in case of T* = 1.0, phi = 0.58. The free energy calculation further supports the sharp nature of the transition. The third-order rotationally invariant bond order shows that with increasing polydispersity, the local cluster favors a more icosahedral arrangement and the system loses its local crystalline symmetry. Interestingly, the value of structure factor S(k) of the amorphous phase at delta similar or equal to 0.10 (just beyond the solid-liquid transition density at T* = 1) becomes 2.75, which is below the value of 2.85 required for freezing given by the empirical Hansen-Verlet rule of crystallization, well known in the theory of freezing.
Resumo:
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess `additional' integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.
Resumo:
Disorder and interactions both play crucial roles in quantum transport. Decades ago, Mott showed that electron-electron interactions can lead to insulating behavior in materials that conventional band theory predicts to be conducting. Soon thereafter, Anderson demonstrated that disorder can localize a quantum particle through the wave interference phenomenon of Anderson localization. Although interactions and disorder both separately induce insulating behavior, the interplay of these two ingredients is subtle and often leads to surprising behavior at the periphery of our current understanding. Modern experiments probe these phenomena in a variety of contexts (e.g. disordered superconductors, cold atoms, photonic waveguides, etc.); thus, theoretical and numerical advancements are urgently needed. In this thesis, we report progress on understanding two contexts in which the interplay of disorder and interactions is especially important.
The first is the so-called “dirty” or random boson problem. In the past decade, a strong-disorder renormalization group (SDRG) treatment by Altman, Kafri, Polkovnikov, and Refael has raised the possibility of a new unstable fixed point governing the superfluid-insulator transition in the one-dimensional dirty boson problem. This new critical behavior may take over from the weak-disorder criticality of Giamarchi and Schulz when disorder is sufficiently strong. We analytically determine the scaling of the superfluid susceptibility at the strong-disorder fixed point and connect our analysis to recent Monte Carlo simulations by Hrahsheh and Vojta. We then shift our attention to two dimensions and use a numerical implementation of the SDRG to locate the fixed point governing the superfluid-insulator transition there. We identify several universal properties of this transition, which are fully independent of the microscopic features of the disorder.
The second focus of this thesis is the interplay of localization and interactions in systems with high energy density (i.e., far from the usual low energy limit of condensed matter physics). Recent theoretical and numerical work indicates that localization can survive in this regime, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in isolated quantum systems: it separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present evidence that many-body localization also occurs in quasiperiodic systems that lack true disorder.
Resumo:
We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave guiding chains to control the acoustic wave transmission. The rapid wave front amplitude decay exhibited by these granular networks makes them highly attractive for impact mitigation applications. The agreement between experiments, numerical simulations, and applicable theoretical predictions validates the wave guiding capabilities of these engineered granular crystals and networks and opens a wide range of possibilities for the realization of increasingly complex granular material design.