990 resultados para Discrete q-integration
Resumo:
A transmission line is characterized by the fact that its parameters are distributed along its length. This fact makes the voltages and currents along the line to behave like waves and these are described by differential equations. In general, the differential equations mentioned are difficult to solve in the time domain, due to the convolution integral, but in the frequency domain these equations become simpler and their solutions are known. The transmission line can be represented by a cascade of π circuits. This model has the advantage of being developed directly in the time domain, but there is a need to apply numerical integration methods. In this work a comparison of the model that considers the fact that the parameters are distributed (Universal Line Model) and the fact that the parameters considered concentrated along the line (π circuit model) using the trapezoidal integration method, and Simpson's rule Runge-Kutta in a single-phase transmission line length of 100 km subjected to an operation power. © 2003-2012 IEEE.
Resumo:
A general approach is presented for implementing discrete transforms as a set of first-order or second-order recursive digital filters. Clenshaw's recurrence formulae are used to formulate the second-order filters. The resulting structure is suitable for efficient implementation of discrete transforms in VLSI or FPGA circuits. The general approach is applied to the discrete Legendre transform as an illustration.
Resumo:
An alternative way is provided to define the discrete Pascal transform using difference operators to reveal the fundamental concept of the transform, in both one- and two-dimensional cases, which is extended to cover non-square two-dimensional applications. Efficient modularised implementations are proposed.
Resumo:
The track of the cruise, and the location of the different stations cover a large range of water masses, many of which take part in the exchange across the Greenland-Scotland Ridge, and of importance for the biogeochemical fluxes in the region. These water masses are of very different origins, which can be observed in the concentration of the different biogeochemical parameters. The concentrations are a result of the combination of the physical and biogeochemical environment in each formation region, and the processes acting on the water masses as they are transported away from the formation areas. The aim of the biogeochemistry measurements was to achieve a better understanding of the strength and variability of the biological carbon pump in the North Atlantic and Nordic Seas.
Resumo:
A real-time large scale part-to-part video matching algorithm, based on the cross correlation of the intensity of motion curves, is proposed with a view to originality recognition, video database cleansing, copyright enforcement, video tagging or video result re-ranking. Moreover, it is suggested how the most representative hashes and distance functions - strada, discrete cosine transformation, Marr-Hildreth and radial - should be integrated in order for the matching algorithm to be invariant against blur, compression and rotation distortions: (R; _) 2 [1; 20]_[1; 8], from 512_512 to 32_32pixels2 and from 10 to 180_. The DCT hash is invariant against blur and compression up to 64x64 pixels2. Nevertheless, although its performance against rotation is the best, with a success up to 70%, it should be combined with the Marr-Hildreth distance function. With the latter, the image selected by the DCT hash should be at a distance lower than 1.15 times the Marr-Hildreth minimum distance.
Resumo:
After a criticism on today’s model for electrical noise in resistors, we pass to use a Quantum-compliant model based on the discreteness of electrical charge in a complex Admittance. From this new model we show that carrier drift viewed as charged particle motion in response to an electric field is unlike to occur in bulk regions of Solid-State devices where carriers react as dipoles against this field. The absence of the shot noise that charges drifting in resistors should produce and the evolution of the Phase Noise with the active power existing in the resonators of L-C oscillators, are two effects added in proof for this conduction model without carrier drift where the resistance of any two-terminal device becomes discrete and has a minimum value per carrier that is the Quantum resistance RK/(2pi)
Resumo:
El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.
Resumo:
Esta tesis aborda la formulación, análisis e implementación de métodos numéricos de integración temporal para la solución de sistemas disipativos suaves de dimensión finita o infinita de manera que su estructura continua sea conservada. Se entiende por dichos sistemas aquellos que involucran acoplamiento termo-mecánico y/o efectos disipativos internos modelados por variables internas que siguen leyes continuas, de modo que su evolución es considerada suave. La dinámica de estos sistemas está gobernada por las leyes de la termodinámica y simetrías, las cuales constituyen la estructura que se pretende conservar de forma discreta. Para ello, los sistemas disipativos se describen geométricamente mediante estructuras metriplécticas que identifican claramente las partes reversible e irreversible de la evolución del sistema. Así, usando una de estas estructuras conocida por las siglas (en inglés) de GENERIC, la estructura disipativa de los sistemas es identificada del mismo modo que lo es la Hamiltoniana para sistemas conservativos. Con esto, métodos (EEM) con precisión de segundo orden que conservan la energía, producen entropía y conservan los impulsos lineal y angular son formulados mediante el uso del operador derivada discreta introducido para asegurar la conservación de la Hamiltoniana y las simetrías de sistemas conservativos. Siguiendo estas directrices, se formulan dos tipos de métodos EEM basados en el uso de la temperatura o de la entropía como variable de estado termodinámica, lo que presenta importantes implicaciones que se discuten a lo largo de esta tesis. Entre las cuales cabe destacar que las condiciones de contorno de Dirichlet son naturalmente impuestas con la formulación basada en la temperatura. Por último, se validan dichos métodos y se comprueban sus mejores prestaciones en términos de la estabilidad y robustez en comparación con métodos estándar. This dissertation is concerned with the formulation, analysis and implementation of structure-preserving time integration methods for the solution of the initial(-boundary) value problems describing the dynamics of smooth dissipative systems, either finite- or infinite-dimensional ones. Such systems are understood as those involving thermo-mechanical coupling and/or internal dissipative effects modeled by internal state variables considered to be smooth in the sense that their evolutions follow continuos laws. The dynamics of such systems are ruled by the laws of thermodynamics and symmetries which constitutes the structure meant to be preserved in the numerical setting. For that, dissipative systems are geometrically described by metriplectic structures which clearly identify the reversible and irreversible parts of their dynamical evolution. In particular, the framework known by the acronym GENERIC is used to reveal the systems' dissipative structure in the same way as the Hamiltonian is for conserving systems. Given that, energy-preserving, entropy-producing and momentum-preserving (EEM) second-order accurate methods are formulated using the discrete derivative operator that enabled the formulation of Energy-Momentum methods ensuring the preservation of the Hamiltonian and symmetries for conservative systems. Following these guidelines, two kind of EEM methods are formulated in terms of entropy and temperature as a thermodynamical state variable, involving important implications discussed throughout the dissertation. Remarkably, the formulation in temperature becomes central to accommodate Dirichlet boundary conditions. EEM methods are finally validated and proved to exhibit enhanced numerical stability and robustness properties compared to standard ones.
Resumo:
Mice carrying an ovine beta-lactoglobulin (BLG) transgene secrete BLG protein into their milk. To explore transgene expression stability, we studied expression levels in three BLG transgenic mouse lines. Unexpectedly, two lines exhibited variable levels of transgene expression. Copy number within lines appeared to be stable and there was no evidence of transgene rearrangement. In the most variable line, BLG production levels were stable within individual mice in two successive lactations. Backcrossing demonstrated that genetic background did not contribute significantly to variable expression. Tissue in situ hybridization revealed mosaicism of transgene expression within individual mammary glands from the two variable lines; in low expressors, discrete patches of cells expressing the transgene were observed. Transgene protein concentrations in milk reflected the proportion of epithelial cells expressing BLG mRNA. Furthermore, chromosomal in situ hybridization revealed that transgene arrays in both lines are situated close to the centromere. We propose that mosaicism of transgene expression is a consequence of the chromosomal location and/or the nature of the primary transgene integration event.
Resumo:
The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.
Resumo:
Population balances of polymer species in terms 'of discrete transforms with respect to counts of groups lead to tractable first order partial differential equations when ali rate constants are independent of chain length and loop formation is negligible [l]. Average molecular weights in the absence ofgelation are long known to be readily found through integration of an initial value problem. The extension to size distribution prediction is also feasible, but its performance is often lower to the one provided by methods based upon real chain length domain [2]. Moreover, the absence ofagood starting procedure and a higher numerical sensitivity hás decisively impaired its application to non-linear reversibly deactivated polymerizations, namely NMRP [3].
Resumo:
The degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric 'teleconnection' and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. Copyright (c) 2006 John Wiley & Sons, Ltd.