916 resultados para Diagnostic techniques, respiratory system
Resumo:
O termo silicose refere-se ao processo de fibrose pulmonar causado pela inalação de poeira contendo sílica. É uma doença ocupacional, incurável, que se inicia nas vias aéreas distais e pode progredir independente do término da exposição. Os testes de função pulmonar, apesar de não serem utilizados como ferramenta diagnóstica para silicose, são amplamente empregados para acompanhar longitudinalmente esses indivíduos. Estudos recentes sugerem que a Técnicas de Oscilações Forçadas (FOT) pode ser aplicada para detecção de alterações pulmonares precoces em indivíduos com silicose. Contudo, existem poucos estudos descrevendo as alterações de mecância respiratória associada com a silicose através da FOT. Neste contexto, os objetivos deste estudo são: (1) analisar as alterações de mecânica respiratória de indivíduos portadores de silicose com diferentes graus de obstrução e (2) avaliar a capacidade da FOT em detectar alterações na função pulmonar decorrentes da silicose. Trata-se de um estudo transversal controlado com avaliação de casos prevalentes, tendo como unidade de avaliação o indivíduo. Os exames realizados incluíram medidas de espirometria e FOT. Foi selecionado um total de 67 indivíduos, 46 portadores de silicose e 21 sadios, caracterizando o grupo controle. Os indivíduos com diagnóstico de silicose foram divididos em três grupos classificados de acordo com o nível de obstrução sugerido pela espirometria. Essa classificação resultou em três categorias: Indivíduos normais ao exame espirométrico (NE), n= 12; com distúrbio ventilatório obstrutivo leve (DVOL), n=22; com distúrbio ventilatório obstrutivo moderado ou acentuado (DVOMA), n= 12. Todos os indivíduos realizaram exames da FOT para análise das propriedades resistivas e reativas do sistema respiratório. Posteriormente aos exames da FOT os indivíduos foram submetidos à espirometria. Considerando os grupos divididos a partir da espirometria, os parâmetros resistivos e reativos e a impedância do sistema respiratório em 4Hz (Z4Hz) se modificaram significativamente com a progressão da distúrbio obstrutivo. Na análise do poder diagnóstico da FOT os parâmetros R0, Rm, Rsr4 e |Z4Hz| mostraram-se precisos para identificar as modificações de mecânica respiratória em pacientes com silicose apresentando distúrbio ventilatório obstrutivo leve. Para distúrbio ventilatório obstrutivo moderado e acentuado todos os parâmetros analisados apresentaram habilidade para identificar essas alterações. Na análise entre o grupo controle e normal ao exame, nenhum parâmetro da FOT apresentou valor de acurácia adequado para uso clínico. Esses resultados são coerentes com as alterações fisiopatológicas relacionadas à silicose, confirmando o potencial da FOT na avaliação das modificações de mecânica respiratória em doentes com silicose.
Resumo:
A doença pulmonar obstrução crônica (DPOC) é caracterizada pela limitação de fluxo parcialmente reversível, classificada por níveis de obstrução pós-broncodilatador. Há várias evidências de que o FEV1 sozinho não é capaz de mostrar a broncodilatação de pacientes com DPOC, mesmo naqueles que apresentam melhora clínica. A técnica de oscilações forçadas (TOF) tem mostrado alta sensibilidade na detecção precoce de alterações mecânicas na DPOC, contudo o efeito broncodilatador na impedância respiratória de pacientes com DPOC ainda não está esclarecido. Objetiva avaliar a utilidade da TOF nos diferentes estágios de obstrução das vias aéreas; (2) avaliar a resposta da impedância respiratória ao salbutamol em indivíduos saudáveis ao exame espirométrico e pacientes com DPOC em diferentes graus de gravidade. Foram avaliados 25 indivíduos saudáveis sem história de tabagismo, 24 tabagistas e 151 pacientes com DPOC classificados em graus I, II, III e IV. Todos os sujeitos foram avaliados pela TOF seguida da espirometria, antes e após o uso do salbutamol spray. As curvas de resistência e reatância demonstraram alteração em todos os estágios de obstrução das vias aéreas após o uso do salbutamol. O grupo de risco apresentou alterações mecânicas semelhantes ao grupo leve (p=ns). Os parâmetros R0, Rm, Csr,din e Z4Hz apresentam desempenho diagnóstico adequado (AUC > 0,85) em todos os estágios de gravidade da doença. Todos os parâmetros de TOF e espirometria apresentaram diminuição após uso do salbutamol. Os indivíduos saudáveis apresentaram uma pequena diminuição comparada aos subgrupos de DPOC. A variação em termos absolutos da ΔZ4Hz e das derivadas da resistência, ΔR0, ΔRm, ΔS, apresentaram variação significativa (p<0,0001, p<0,003; p<0,04; p<0,0002, respectivamente) com o aumento da obstrução brônquica. Nas derivadas da reatância o ΔXm aumentou com a gravidade da doença (p<0,0002). Por outro lado, a ΔCrs,dyn não demonstrou diferença significativa com a gravidade da DPOC. Em termos percentuais os parâmetros da TOF apresentaram variação expressiva em ΔRm% (p<0,02), ΔS% (p<0,02) e ΔXm% (p<0,004) com o aumento da obstrução nas vias aéreas. Por outro lado, ΔR0%, ΔCrs,dyn% e ΔZ4Hz% não variaram entre os estágios da DPOC. A associação entre a broncodilatação nas vias aéreas e a impedância pulmonar foi fraca entre ΔXm vs ΔFVC (r=0,32, p<0,0001) e ΔZ4Hz% vs ΔFEV1% vs ΔFVC% (r=0.28, p<0,0005; r=0,29, p<0,0003, respectivamente). A TOF é útil na avaliação das alterações mecânicas nos diferentes níveis de obstrução das vias aéreas na DPOC. Demonstramos o benefício da medicação broncodilatadora, quantificando a melhora da ventilação através da TOF. A impedância respiratória diminui em todos os estágios da DPOC, o estágio leve melhorou tanto quanto o estágio muito grave. Isto sugere que a medida da impedância pulmonar não é dependente do volume como ocorre na espirometria e que a broncodilatação ocorre em todas as fases da progressão da DPOC.
IDENTIFYING AND MONITORING THE ROLES OF CAVITATION IN HEATING FROM HIGH-INTENSITY FOCUSED ULTRASOUND
Resumo:
For high-intensity focused ultrasound (HIFU) to continue to gain acceptance for cancer treatment it is necessary to understand how the applied ultrasound interacts with gas trapped in the tissue. The presence of bubbles in the target location have been thought to be responsible for shielding the incoming pressure and increasing local heat deposition due to the bubble dynamics. We lack adequate tools for monitoring the cavitation process, due to both limited visualization methods and understanding of the underlying physics. The goal of this project was to elucidate the role of inertial cavitation in HIFU exposures in the hope of applying noise diagnostics to monitor cavitation activity and control HIFU-induced cavitation in a beneficial manner. A number of approaches were taken to understand the relationship between inertial cavitation signals, bubble heating, and bubble shielding in agar-graphite tissue phantoms. Passive cavitation detection (PCD) techniques were employed to detect inertial bubble collapses while the temperature was monitored with an embedded thermocouple. Results indicate that the broadband noise amplitude is correlated to bubble-enhanced heating. Monitoring inertial cavitation at multiple positions throughout the focal region demonstrated that bubble activity increased prefocally as it diminished near the focus. Lowering the HIFU duty cycle had the effect of maintaining a more or less constant cavitation signal, suggesting the shielding effect diminished when the bubbles had a chance to dissolve during the HIFU off-time. Modeling the effect of increasing the ambient temperature showed that bubbles do not collapse as violently at higher temperatures due to increased vapor pressure inside the bubble. Our conclusion is that inertial cavitation heating is less effective at higher temperatures and bubble shielding is involved in shifting energy deposition at the focus. The use of a diagnostic ultrasound imaging system as a PCD array was explored. Filtering out the scattered harmonics from the received RF signals resulted in a spatially- resolved inertial cavitation signal, while the amplitude of the harmonics showed a correlation with temperatures approaching the onset of boiling. The result is a new tool for detecting a broader spectrum of bubble activity and thus enhancing HIFU treatment visualization and feedback.
Resumo:
OBJECTIVE: The diagnosis of Alzheimer's disease (AD) remains difficult. Lack of diagnostic certainty or possible distress related to a positive result from diagnostic testing could limit the application of new testing technologies. The objective of this paper is to quantify respondents' preferences for obtaining AD diagnostic tests and to estimate the perceived value of AD test information. METHODS: Discrete-choice experiment and contingent-valuation questions were administered to respondents in Germany and the United Kingdom. Choice data were analyzed by using random-parameters logit. A probit model characterized respondents who were not willing to take a test. RESULTS: Most respondents indicated a positive value for AD diagnostic test information. Respondents who indicated an interest in testing preferred brain imaging without the use of radioactive markers. German respondents had relatively lower money-equivalent values for test features compared with respondents in the United Kingdom. CONCLUSIONS: Respondents preferred less invasive diagnostic procedures and tests with higher accuracy and expressed a willingness to pay up to €700 to receive a less invasive test with the highest accuracy.
Resumo:
This article considers national policy drivers promoting the development of advanced assessment skills and practical procedures for the safe and effective use of the stethoscope in the clinical area. The evidence base underpinning effective use of the stethoscope in clinical practice is explored, including the preparation of the patient and the environment, applying infection control policies, and placing an emphasis on privacy and dignity. This is followed by a practical guide to auscultation technique of the respiratory system for nurses developing advanced practice skills.
Resumo:
Phase resolved optical emission spectroscopy (PROES) bears considerable potential for diagnostics of RF discharges that give detailed insight of spatial and temporal variations of excitation processes. Based on phase and space resolved measurements of the population dynamics of excited states several diagnostic techniques have been developed. Results for a hydrogen capacitively coupled RF (CCRF) discharge are discussed as an example. The gas temperature, the degree of dissociation and the temporally and spatially resolved electron energy distribution function (EEDF) of energetic electrons (>12eV) are measured. Furthermore, the pulsed electron impact excitation during the field reversal phase, typical for hydrogen CCRF discharges, is exploited for measurements of atomic and molecular data like lifetimes of excited states, coefficients for radiationless collisional de-excitation (quenching coefficients), and cascading processes from higher electronic states.
Resumo:
Many neuropeptides are similar in size, amino acid composition and charge to antimicrobial peptides. This study aimed to determine whether the neuropeptides substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), displayed antimicrobial activity against Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. SP, NPY, VIP and CGRP displayed variable degrees of antimicrobial activity against all the pathogens tested with the exception of S. aureus. These antimicrobial activities add a further dimension to the immunomodulatory roles for neuropeptides in the inflammatory and immune responses. (c) 2008 Elsevier B.V. All rights reserved.
A nearly real-time high temperature laser-plasma diagnostic using photonuclear reactions in tantalum
Resumo:
A method of measuring the temperature of the fast electrons produced in ultraintense laser-plasma interactions is described by inducing photonuclear reactions, in particular (gamma,n) and (gamma,3n) reactions in tantalum. Analysis of the gamma rays emitted by the daughter nuclei of these reactions using a germanium counter enables a relatively straightforward near real-time temperature measurement to be made. This is especially important for high temperature plasmas where alternative diagnostic techniques are usually difficult and time consuming. This technique can be used while other experiments are being conducted. (C) 2002 American Institute of Physics.
Resumo:
In patients with cystic fibrosis (CF) lung damage secondary to chronic infection is the main cause of death. Treatment of lung disease to reduce the impact of infection, inflammation and subsequent lung injury is therefore of major importance. Here we discuss the present status of antibiotic therapy for the major pathogens in CF airways, including prophylaxis against infection, eradication of early infection, suppression of chronic infection, and the treatment of infective exacerbations. We outline measures to optimize maintenance treatment for infection in the light of novel antibiotic drug formulations. We discuss new developments in culture-independent microbiological diagnostic techniques and the use of tools for monitoring the success of antibiotic treatment courses. Finally, cost-effectiveness analyses for antibiotic treatment in CF patients are discussed.
Resumo:
The adoption of each new level of automotive emissions legislation often requires the introduction of additional emissions reduction techniques or the development of existing emissions control systems. This, in turn, usually requires the implementation of new sensors and hardware which must subsequently be monitored by the on-board fault detection systems. The reliable detection and diagnosis of faults in these systems or sensors, which result in the tailpipe emissions rising above the progressively lower failure thresholds, provides enormous challenges for OBD engineers. This paper gives a review of the field of fault detection and diagnostics as used in the automotive industry. Previous work is discussed and particular emphasis is placed on the various strategies and techniques employed. Methodologies such as state estimation, parity equations and parameter estimation are explained with their application within a physical model diagnostic structure. The utilization of symptoms and residuals in the diagnostic process is also discussed. These traditional physical model based diagnostics are investigated in terms of their limitations. The requirements from the OBD legislation are also addressed. Additionally, novel diagnostic techniques, such as principal component analysis (PCA) are also presented as a potential method of achieving the monitoring requirements of current and future OBD legislation.
Resumo:
Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.
Resumo:
Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. (C) 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Resumo:
Next-generation sequencing (NGS) is beginning to show its full potential for diagnostic and therapeutic applications. In particular, it is enunciating its capacity to contribute to a molecular taxonomy of cancer, to be used as a standard approach for diagnostic mutation detection, and to open new treatment options that are not exclusively organ-specific. If this is the case, how much validation is necessary and what should be the validation strategy, when bringing NGS into the diagnostic/clinical practice? This validation strategy should address key issues such as: what is the overall extent of the validation? Should essential indicators of test performance such as sensitivity of specificity be calculated for every target or sample type? Should bioinformatic interpretation approaches be validated with the same rigour? What is a competitive clinical turnaround time for a NGS-based test, and when does it become a cost-effective testing proposition? While we address these and other related topics in this commentary, we also suggest that a single set of international guidelines for the validation and use of NGS technology in routine diagnostics may allow us all to make a much more effective use of resources.
Resumo:
Professor Manuel Salto-Tellez of Queen’s University, Belfast, Northern Ireland is an expert histopathologist and molecular diagnostician. Professor Salto-Tellez is a lead investigator at the Northern Ireland Molecular Pathology Laboratory and also serves as a member of the Editorial Advisory Board for Expert Review of Molecular Diagnostics. In this interview, he proposes directions for the future of molecular pathology and molecular diagnostics, integrating all aspects of pathology toward a common goal.
Resumo:
This work investigates low cost localization systems (LS) based on received signal strength (RSS) and integrated with different types of antennas with main emphasis on sectorial antennas. The last few years have witnessed an outstanding growth in wireless sensor networks (WSN). Among its various possible applications, the localization field became a major area of research. The localization techniques based on RSS are characterized by simplicity and low cost of integration. The integration of LS based on RSS and sectorial antennas (SA) was proven to provide an effective solution for reducing the number of required nodes of the networks and allows the combination of several techniques, such as RSS and angle of arrival (AoA). This PhD thesis focuses on studying techniques, antennas and protocols that best meet the needs of each LS with main focus on low cost systems based on RSS and AoA. Firstly there are studied localization techniques and system that best suit the requirements of the user and the antennas that are most appropriate according to the nature of the signal. In this step it is intended to provide a fundamental understanding of the undertaken work. Then the developed antennas are presented according to the following categories: sectorial and microstrip antennas. Two sectorial antennas are presented: a narrowband antenna operating at 2.4 to 2.5 GHz and a broadband antenna operating at 800MHz-2.4GHz. The low cost printed antennas were designed to operate at 5 GHz, which may be used for vehicular communication. After presenting the various antennas, several prototypes of indoor/outdoor LS are implemented and analyzed. Localization protocols are also proposed, one based on simplicity and low power, and the other on interoperability with different types of antennas and system requirements.