975 resultados para Diabetic rats
Resumo:
Objective and design: Knowing that hyperglycemia is a hallmark of vascular dysfunction in diabetes and that neonatal streptozotocin-induced diabetic rats (n-STZ) present reduced inflammatory response, we decided to evaluate the effect of chlorpropamide-lowered blood glucose levels on carrageenan-induced rat paw edema and pleural exudate in n-STZ. Materials: Diabetes was induced by STZ injection (160 mg/kg, ip) in neonates (2-day-old) Wistar rats. Treatment: n-STZ diabetic rats were treated with chlorpropamide (200 mg/kg, 15 d, by gavage) 8 weeks after STZ injection. Methods: Carrageenan-induced paw edema and pleural exudate volumes were assessed concomitantly with peripheral and exudate leukocyte count. We also evaluated the expression of inducible nitric oxide synthase (iNOS) in lungs of all experimental groups. Results: Chlorpropamide treatment improved glucose tolerance, beta-cell function (assessed by HOMA-beta), corrected paw edema, and pleural exudate volume in n-STZ. Neither leukocyte count nor iNOS expression were affected by diabetes or by chlorpropamide treatment. Conclusion: Chlorpropamide treatment by restoring beta-cell function, reducing blood sugar levels, and improving glucose tolerance might be contributing to the correction of the reduced inflammatory response tested as paw edema and pleural exudate in n-STZ diabetic rats.
Resumo:
Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Aims: Na(+), K(+)-ATPase activity contributes to the regulation of vascular contractility and it has been suggested that vascular Na(+), K(+)-ATPase activity may be altered during the progression of diabetes; however the mechanisms involved in the altered Na(+), K(+)-ATPase activity changes remain unclear. Thus, the aim of the present study was to evaluate ouabain-sensitive Na(+), K(+)-ATPase activity and the mechanism(s) responsible for any alterations on this activity in aortas from 1- and 4-week streptozotocin-pretreated (50 mg kg(-1), i.v.) rats. Main methods: Aortic rings were used to evaluate the relaxation induced by KCl (1-10 mM) in the presence and absence of ouabain (0.1 mmol/L) as an index of ouabain-sensitive Na(+), K(+)-ATPase activity. Protein expression of COX-2 and p-PKC-beta II in aortas were also investigated. Key findings: Ouabain-sensitive Na(+), K(+)-ATPase activity was unaltered following 1-week of streptozotocin administration, but was increased in the 4-week diabetic aorta (27%). Endothelium removal or nitric oxide synthase inhibition with L-NAME decreased ouabain-sensitive Na(+), K(+)-ATPase activity only in control aortas. In denuded aortic rings, indomethacin. NS-398, ridogrel or Go-6976 normalized ouabain-sensitive Na(+), K(+)-ATPase activity in 4-week diabetic rats. In addition, COX-2 (51%) and p-PKC-beta II (59%) protein expression were increased in 4-week diabetic aortas compared to controls. Significance: In conclusion, diabetes led to a time-dependent increase in ouabain-sensitive Na(+), K(+)-ATPase activity. The main mechanism involved in this activation is the release of TxA(2)/PGH(2) by COX-2 in smooth muscle cells, linked to activation of the PKC pathway. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Diabetic individuals are more susceptible to infections and this seems to be related to impaired phagocyte function. Alveolar macrophages (AMs) are the first barrier to prevent respiratory infections Leukotrienes (LTs) increase AM phagocytic activity via Fc gamma R. In this study, we compared AMs from diabetic and nondiabetic rats for phagocytosis via Fc gamma R and the roles of LTs and insulin Diabetes was induced in male Wistar rats by alloxan (42 mg/kg, i.v); macrophages were obtained by bronchoalveolar lavage and IgG-opsonised sheep red blood cells (IgG-SRBC) were used as targets. LTs were added to the AMs 5 min before the addition of IgG-SRBC. AMs were treated with a LT synthesis inhibitor (zileuton, 10 mu M), or antagonists of the LTB(4) receptor (CP105 696, 10 mu M) cys-LT receptor (MK571, 10 mu M), 30 or 20 min before the addition of IgG-SRBC, respectively. We found that the phagocytosis of IgG-SRBC by AMs from diabetic rats is impaired compared with non-diabetic rats. Treatment with the LT inhibitor/antagonists significantly reduced AM phagocytosis in non-diabetic but not diabetic rats. During the phagocytosis of IgG-SRBC LTB(4) and LTC(4) were produced by AMs from both groups. The addition of exogenous LTB(4) or LTD(4) potentiated phagocytosis similarly in both groups Phagocytosis was followed by the phosphorylation of PKC-delta. ERK and Akt This was reduced by zileuton treatment in AMs from non-diabetic but not diabetic rats The addition of insulin to AMs further increased the phagocytosis by increasing PKC-delta phosphorylation These results suggest that the impaired phagocytosis found in AMs from diabetic rats is related to a deficient coupling of LTs to the Fc gamma R signaling cascade and that insulin has a key role in this coupling An essential role for insulin in Innate immunity is suggested (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Diabetic patients are more susceptible to infections, and their inflammatory response is impaired. This is restored by insulin treatment. In the present study, we investigated the effect of insulin on LPS-induced signaling pathways and mediators in the lung of diabetic rats. Diabetic male Wistar rats (alloxan, 42 mg/kg i.v., 10 days) and control rats received intratracheal instillation of LPS (750 mu g/0.4 mL) or saline. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU s.c.) 2 h before LPS. After 6 h, bronchoalveolar lavage was performed for the release of mediators, and lung tissue was homogenized for analysis of LPS-induced signaling pathways. Relative to control rats, diabetic rats exhibited a significant reduction in the LPS-induced phosphorylation of extracellular signal-regulated kinase (64%), p38 (70%), protein kinase B (67%), and protein kinase C alpha (57%) and delta (65%) and in the expression of iNOS (32%) and cyclooxygenase 2 (67%) in the lung homogenates. The bronchoalveolar lavage fluid concentrations of NO (47%) and IL-6 (49%) were also reduced in diabetic rats, whereas the cytokine-induced neutrophil chemoattractant 2 (CINC-2) levels were increased 23%, and CINC-1 was not different from control animals. Treatment of diabetic rats with insulin completely or partially restored all these parameters. In conclusion, data presented show that insulin regulates mitogen-activated protein kinase, phosphatidylinositol 3`-kinase, protein kinase C pathways, expression of the inducible enzymes, cyclooxygenase 2 and iNOS, and levels of IL-6 and CINC-2 in LPS-induced lung inflammation in diabetic rats. These results suggest that the protective effect of insulin in sepsis could be due to modulation of cellular signal transduction factors.
Resumo:
We hypothesize that, in kidney of diabetic rats, hepatocyte nuclear factors (HNF-1 alpha. and HNF-3 beta) play a critical role in the overexpression of solute carrier 2A2 (SLC2A2) gene. Diabetic rats submitted or not to rapid (up to 12 h) and short-term (1, 4 and 6 days) insulin treatment were investigated. Twofold increase in GLUT2 mRNA was observed in diabetic, accompanied by significant increases in HNF-1 alpha and HNF-3 beta expression and binding activity. Additional 2-fold increase in GLUT2 mRNA and HNF-3 beta expression/activity was observed in 12-h insulin-treated rats. Six-day insulin treatment decreased GLUT2 mRNA and HNF-1 alpha expression and activity to levels of non-diabetic rats, whereas HNF-3 beta decreased to levels of non-insulin-treated diabetic rats. Our results provide evidence for a link between the overexpression of SLC2A2 gene and the transcriptional activity of HNF-1 alpha and HNF-3 beta in kidney of diabetic rats. Furthermore, recovery of SLC2A2 gene after 6-day insulin treatment also involves HNF-1 alpha and HNF-3 beta activity. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Several studies have shown the antidiabetic properties of sodium tungstate. In this study, we evaluated some biochemical parameters of the parotid salivary gland of streptozotocin-induced diabetic rats treated with sodium tungstate solution (2 mg/ml). The studied groups were: untreated control (UC), treated control (TC), untreated diabetic (UD), and treated diabetic (TD). After 2 and 6 weeks of treatment, parotid gland was removed and total protein and sialic acid (free and total) concentration and amylase and peroxidase activities were determined. Data were compared by variance analysis and Tukey test (p < 0.05). The sodium tungstate treatment modestly decreased the glycemia of streptozotocin-induced diabetic rats. At week 2 of the study, parotid gland of diabetic rats presented a reduction of total protein concentration (55%) and an increase of amylase (120%) and peroxidase (160%) activities, free (150%) and total (170%) sialic acid concentration. No alteration in the evaluated parameters at week 6 of the study was observed. Sodium tungstate presented no significant effect in parotid gland. Our results suggest that diabetes causes initial modification in biochemical composition of parotid. However, this gland showed a recovery capacity after 6 week of the experimental time. Sodium tungstate has no effect in peripheral tissues, such as salivary glands.
Resumo:
Investigou-se o efeito do succinato de cloranfenicol (30 mg/kg, a cada 12 h, durante 4 dias, IP) sobre o acúmulo de leucócitos polimorfonucleares (PMN) na pleurisia induzida pela carragenina (150 mig) em ratos (Wistar, machos, 180-230 g, n = 12) diabéticos (40 mg/kg de aloxana, IV). O antibiótico produziu aumento de 36% no número de PMN (p<0,05) migrados para a cavidade pleural de animais normais. O estado diabético provocou redução de 45% dos PMN (p<0,05) acumulados no exsudato pleural de animais não tratados com o antibiótico. Por outro lado, animais diabéticos tratados com succinato de cloranfenicol apresentaram resposta de PMN que não diferiu estatisticamente do observado em animais controle, não tratados. A contagem total e diferencial dos leucócitos circulantes realizada antes e 4 h depois da aplicação da carragenina não diferiu estatisticamente entre os grupos.
Resumo:
The NADPH-diaphorase (NADPH-d) positive myoenteric neurons from the body of the stomach of rats with streptozotocin-induced diabetes with or without supplementation with acetyl-L-carnitine (ALC) were evaluated. At the age of 105 days the animals were divided into four groups: normoglycaemic (C), normoglycaemic supplemented with ALC (CC), diabetic (D) and diabetic supplemented with ALC (DC). The supplementation with ALC (200 mg/kg body weight/day) to groups CC and DC was made during 105 days. After this period the animals were killed and the stomach removed and subjected to the histochemical technique of NADPH-d for the staining of the neurons of the myoenteric plexus. The area of 500 neurons of each group was investigated, as well as the neuronal density in an area of 23.84 mm(2) in each stomach. ALC promoted reduction (P < 0.05) of fasting glycaemia, water ingestion and areas of the profiles of the cell bodies of the NADPH-d neurons in the diabetic animals. The density of these neurons was not statistically different in the groups studied. It is suggested, therefore, a moderate neuroprotective effect of ALC, because the diminishment of the areas of the neuronal profiles in the supplemented diabetic animals, although being statistically significant relative to the non-supplemented diabetics, was not sufficient to equal the values from the non-diabetic controls.
Resumo:
In this work, we investigated the effect of the acetyl-L-carnitine (ALC) supplementation (200 mg/kg/day) on the myenteric neurons of the ileum of rats made diabetic by streptozotocin (35 mg/kg, i.v.). Four groups were used: diabetic (D), diabetic supplemented with ALC (DC), control (C) and control supplemented with ALC (CC). After 15 weeks of diabetes induction the animals were killed and the ileum was collected and subjected to whole-mount preparation to evidence the myenteric neurons through the histochemical technique of the NADH-diaphorase. The density of neurons seen in 12.72 min(2) of ileum showed no difference among the groups, although in group D it was 22% smaller than in group C, while group DC was 9% smaller to group CC. The profiles of the cell bodies (PC) of 1000 neurons per group were analysed. The neurons PC in group D decreased (P < 0.0001) when compared with other groups and increased (P < 0.0001) when compared with group DC. The incidence of neurons with a PC inferior to 200 mu m(2) was larger in group D. The frequency of neurons with a PC higher than 200 mu m(2) in group DC was close to those seen in groups C and CC. We concluded that ALC eases the loss of neurons and makes the incidence of myenteric neurons with a PC higher than 200 mu m(2) similar to the control rats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Leaf decoctions of Cissus sicyoides (princess vine) are taken widely as a popular remedy for diabetes mellitus in Brazil, where its common name is 'vegetal insulin'. However, there have been practically no attempts so far to determine scientifically whether it has antidiabetic effects and we decided to administer leaf decoctions, over extended periods, to normal and streptozotocin-diabetic rats, and investigate the effects of this treatment on the physiological and metabolic parameters that are altered in diabetic animals. The experimental model adopted was shown to be appropriate by running a parallel treatment with insulin, which led to expected improvements in several abnormal parameter values. The decoction treatment significantly reduced the intake of both food and fluid and the volume of urine excreted, as well as the levels of blood glucose, urinary glucose and urinary urea, in comparison with controls. Lipid metabolism was not affected by the treatment; nor was the level of hepatic glycogen in diabetic animals, which indicated that the mechanism responsible for the improvement in carbohydrate metabolism, observed in animals treated with the decoction, could not involve inhibition of glycogenolysis and/or stimulation of glycogenesis. The fact that normal animals treated with C. sicyoides exhibited no changes in any of the measured parameters suggests that its mode of action in diabetic animals does not resemble those of sulphonylurea or insulin. It may, however, act in a similar way to biguanide, via inhibition of gluconeogenesis.
Resumo:
Extracts and decoctions of Eugenia jambolana Lam., Eugenia uniflora L., and Eugenia punicifolia (Humb., Bonpl. & Kunt) DC. are used in traditional medicine to treat diabetes mellitus. Although there have been reports that Eugenia jambolana and Eugenia uniflora have antidiabetic effects, no study has yet been made on Eugenia punicifolia . We investigated the effects of aqueous, butanol, and methanol extracts of Eugenia punicifolia leaves administered by gavage to streptozotocin-diabetic rats for 26 to 29 days. Body weight, food and fluid intake, urine volume, and urinary glucose and urea were evaluated every 7 days. At the end of the experiment, we measured serum cholesterol, high-density lipoprotein (HDL)-cholesterol, triglycerides and bilirubin, hepatic glycogen and serum marker-enzymes (alanine and aspartate aminotransferases, alkaline phosphatase, gamma-glutamyltransferase, L-lactate dehydrogenase, creatine kinase, alpha-amylase, and angiotensin I converting enzyme). We found that in rats treated with the aqueous extracts, food and liquid intake, urinary volume, and body weight were all reduced, while for rats treated with the methanol extract, not only were liquid intake, urinary volume and body weight reduced, but urinary glucose and urea also decreased. Rats treated with the butanol extract showed no significant alterations in any of the parameters measured. Chronic treatment with extracts had no effect on the marker enzymes nor on serum bilirubin levels. The results indicate that aqueous extracts of Eugenia punicifolia leaves produced an anorexic effect and that methanol extracts had a beneficial effect on the diabetic state by improving carbohydrate and protein metabolism without provoking hepatobiliary, microvascular, muscular, or pancreatic toxic effects.
Resumo:
The effects of using Bauhinia forficata leaf decoction (150 g leaf/l water; 35.2+/-7.8 ml/100 g body weight mean daily dose) as a drinking-water substitute for about I month on streptozotocin-diabetes (STZ-diabetes) in male Wistar rats were investigated. The physico-metabolic parameters measured were: body weight, food and liquid intake, urinary volume, hepatic glycogen, serum triglycerides and cholesterol, plasma glucose, urinary glucose and urea, and the weight of epididymal and retroperitoneal adipose tissue and soleus and extensor digitorum longus muscles. The STZ-diabetic rats treated with decoction showed a significant reduction in serum and urinary glucose and urinary urea as compared to the STZ-diabetic control, no difference being seen between decoction-treated and -untreated non-diabetic rats. The other physico-metabolic factors showed no changes in treated STZ-diabetic rats. The improvement in carbohydrate metabolism seen in the rats treated with Bauhinia forficata decoction does not appear to be linked to the inhibition of glycogenolysis or the stimulation of glycogenesis nor does it appear to act in a way similar to insulin or the sulfonylureas, although it may act by the inhibition of neoglycogenesis in a manner similar to that of the biguanides. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
OBJETIVO: Investigar se o diabetes mellitus pode alterar a força de ruptura (FR) e o conteúdo de colágeno em anastomoses realizadas no íleo e cólon de ratos. MÉTODOS: 300 ratos Wistar foram distribuídos por sorteio em 5 grupos experimentais com 60 animais cada: controle normal manipulado cirurgicamente (G1); normais controles submetidos a anastomoses no íleo (G2) e cólon (G3); ratos diabéticos submetidos a anastomoses no íleo (G4) e cólon (G5). Cada grupo foi dividido em 6 subgrupos com 10 ratos cada para sacrifícios com 0, 4, 7, 14, 21 e 30 dias após as operações. Os procedimentos cirúrgicos foram realizados 3 meses após a indução do diabetes com aloxana. A FR foi medida em todas anastomoses intestinais. Fragmentos de anastomoses do íleo e cólon foram retirados para dosagens de hidroxiprolina (HP) e proteína tecidual total (PT). RESULTADOS: A FR teve significante redução (P<0,05) nos grupos diabéticos G4 e G5, até 7 e 14 dias após a operação, respectivamente, quando comparada à observada nos grupos controles G2 e G3. Não foram observadas diferenças significantes nas dosagens de HP e PT em ratos diabéticos e controles, tanto operados no íleo como no cólon, em todos os momentos de avaliação. CONCLUSÃO: O diabetes conduz a alterações da força de ruptura de anastomoses intestinais durante a fase inicial da reparação da ferida cirúrgica, porém, este fato parece não estar relacionado à capacidade de sintetizar colágeno.