934 resultados para Detection process


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A lo largo del presente trabajo se investiga la viabilidad de la descomposición automática de espectros de radiación gamma por medio de algoritmos de resolución de sistemas de ecuaciones algebraicas lineales basados en técnicas de pseudoinversión. La determinación de dichos algoritmos ha sido realizada teniendo en cuenta su posible implementación sobre procesadores de propósito específico de baja complejidad. En el primer capítulo se resumen las técnicas para la detección y medida de la radiación gamma que han servido de base para la confección de los espectros tratados en el trabajo. Se reexaminan los conceptos asociados con la naturaleza de la radiación electromagnética, así como los procesos físicos y el tratamiento electrónico que se hallan involucrados en su detección, poniendo de relieve la naturaleza intrínsecamente estadística del proceso de formación del espectro asociado como una clasificación del número de detecciones realizadas en función de la energía supuestamente continua asociada a las mismas. Para ello se aporta una breve descripción de los principales fenómenos de interacción de la radiación con la materia, que condicionan el proceso de detección y formación del espectro. El detector de radiación es considerado el elemento crítico del sistema de medida, puesto que condiciona fuertemente el proceso de detección. Por ello se examinan los principales tipos de detectores, con especial hincapié en los detectores de tipo semiconductor, ya que son los más utilizados en la actualidad. Finalmente, se describen los subsistemas electrónicos fundamentales para el acondicionamiento y pretratamiento de la señal procedente del detector, a la que se le denomina con el término tradicionalmente utilizado de Electrónica Nuclear. En lo que concierne a la espectroscopia, el principal subsistema de interés para el presente trabajo es el analizador multicanal, el cual lleva a cabo el tratamiento cualitativo de la señal, y construye un histograma de intensidad de radiación en el margen de energías al que el detector es sensible. Este vector N-dimensional es lo que generalmente se conoce con el nombre de espectro de radiación. Los distintos radionúclidos que participan en una fuente de radiación no pura dejan su impronta en dicho espectro. En el capítulo segundo se realiza una revisión exhaustiva de los métodos matemáticos en uso hasta el momento ideados para la identificación de los radionúclidos presentes en un espectro compuesto, así como para determinar sus actividades relativas. Uno de ellos es el denominado de regresión lineal múltiple, que se propone como la aproximación más apropiada a los condicionamientos y restricciones del problema: capacidad para tratar con espectros de baja resolución, ausencia del concurso de un operador humano (no supervisión), y posibilidad de ser soportado por algoritmos de baja complejidad capaces de ser instrumentados sobre procesadores dedicados de alta escala de integración. El problema del análisis se plantea formalmente en el tercer capítulo siguiendo las pautas arriba mencionadas y se demuestra que el citado problema admite una solución en la teoría de memorias asociativas lineales. Un operador basado en este tipo de estructuras puede proporcionar la solución al problema de la descomposición espectral deseada. En el mismo contexto, se proponen un par de algoritmos adaptativos complementarios para la construcción del operador, que gozan de unas características aritméticas especialmente apropiadas para su instrumentación sobre procesadores de alta escala de integración. La característica de adaptatividad dota a la memoria asociativa de una gran flexibilidad en lo que se refiere a la incorporación de nueva información en forma progresiva.En el capítulo cuarto se trata con un nuevo problema añadido, de índole altamente compleja. Es el del tratamiento de las deformaciones que introducen en el espectro las derivas instrumentales presentes en el dispositivo detector y en la electrónica de preacondicionamiento. Estas deformaciones invalidan el modelo de regresión lineal utilizado para describir el espectro problema. Se deriva entonces un modelo que incluya las citadas deformaciones como una ampliación de contribuciones en el espectro compuesto, el cual conlleva una ampliación sencilla de la memoria asociativa capaz de tolerar las derivas en la mezcla problema y de llevar a cabo un análisis robusto de contribuciones. El método de ampliación utilizado se basa en la suposición de pequeñas perturbaciones. La práctica en el laboratorio demuestra que, en ocasiones, las derivas instrumentales pueden provocar distorsiones severas en el espectro que no pueden ser tratadas por el modelo anterior. Por ello, en el capítulo quinto se plantea el problema de medidas afectadas por fuertes derivas desde el punto de vista de la teoría de optimización no lineal. Esta reformulación lleva a la introducción de un algoritmo de tipo recursivo inspirado en el de Gauss-Newton que permite introducir el concepto de memoria lineal realimentada. Este operador ofrece una capacidad sensiblemente mejorada para la descomposición de mezclas con fuerte deriva sin la excesiva carga computacional que presentan los algoritmos clásicos de optimización no lineal. El trabajo finaliza con una discusión de los resultados obtenidos en los tres principales niveles de estudio abordados, que se ofrecen en los capítulos tercero, cuarto y quinto, así como con la elevación a definitivas de las principales conclusiones derivadas del estudio y con el desglose de las posibles líneas de continuación del presente trabajo.---ABSTRACT---Through the present research, the feasibility of Automatic Gamma-Radiation Spectral Decomposition by Linear Algebraic Equation-Solving Algorithms using Pseudo-Inverse Techniques is explored. The design of the before mentioned algorithms has been done having into account their possible implementation on Specific-Purpose Processors of Low Complexity. In the first chapter, the techniques for the detection and measurement of gamma radiation employed to construct the spectra being used throughout the research are reviewed. Similarly, the basic concepts related with the nature and properties of the hard electromagnetic radiation are also re-examined, together with the physic and electronic processes involved in the detection of such kind of radiation, with special emphasis in the intrinsic statistical nature of the spectrum build-up process, which is considered as a classification of the number of individual photon-detections as a function of the energy associated to each individual photon. Fbr such, a brief description of the most important matter-energy interaction phenomena conditioning the detection and spectrum formation processes is given. The radiation detector is considered as the most critical element in the measurement system, as this device strongly conditions the detection process. Fbr this reason, the characteristics of the most frequent detectors are re-examined, with special emphasis on those of semiconductor nature, as these are the most frequently employed ones nowadays. Finally, the fundamental electronic subsystems for preaconditioning and treating of the signal delivered by the detector, classically addresed as Nuclear Electronics, is described. As far as Spectroscopy is concerned, the subsystem most interesting for the scope covered by the present research is the so-called Multichannel Analyzer, which is devoted to the cualitative treatment of the signal, building-up a hystogram of radiation intensity in the range of energies in which the detector is sensitive. The resulting N-dimensional vector is generally known with the ñame of Radiation Spectrum. The different radio-nuclides contributing to the spectrum of a composite source will leave their fingerprint in the resulting spectrum. Through the second chapter, an exhaustive review of the mathematical methods devised to the present moment to identify the radio-nuclides present in the composite spectrum and to quantify their relative contributions, is reviewed. One of the more popular ones is the so-known Múltiple Linear Regression, which is proposed as the best suited approach according to the constraints and restrictions present in the formulation of the problem, i.e., the need to treat low-resolution spectra, the absence of control by a human operator (un-supervision), and the possibility of being implemented as low-complexity algorithms amenable of being supported by VLSI Specific Processors. The analysis problem is formally stated through the third chapter, following the hints established in this context, and it is shown that the addressed problem may be satisfactorily solved under the point of view of Linear Associative Memories. An operator based on this kind of structures may provide the solution to the spectral decomposition problem posed. In the same context, a pair of complementary adaptive algorithms useful for the construction of the solving operator are proposed, which share certain special arithmetic characteristics that render them specially suitable for their implementation on VLSI Processors. The adaptive nature of the associative memory provides a high flexibility to this operator, in what refers to the progressive inclusión of new information to the knowledge base. Through the fourth chapter, this fact is treated together with a new problem to be considered, of a high interest but quite complex nature, as is the treatment of the deformations appearing in the spectrum when instrumental drifts in both the detecting device and the pre-acconditioning electronics are to be taken into account. These deformations render the Linear Regression Model proposed almost unuseful to describe the resulting spectrum. A new model including the drifts is derived as an extensión of the individual contributions to the composite spectrum, which implies a simple extensión of the Associative Memory, which renders this suitable to accept the drifts in the composite spectrum, thus producing a robust analysis of contributions. The extensión method is based on the Low-Amplitude Perturbation Hypothesis. Experimental practice shows that in certain cases the instrumental drifts may provoke severe distortions in the resulting spectrum, which can not be treated with the before-mentioned hypothesis. To cover also these less-frequent cases, through the fifth chapter, the problem involving strong drifts is treated under the point of view of Non-Linear Optimization Techniques. This reformulation carries the study to the consideration of recursive algorithms based on the Gauss-Newton methods, which allow the introduction of Feed-Back Memories, computing elements with a sensibly improved capability to decompose spectra affected by strong drifts. The research concludes with a discussion of the results obtained in the three main levéis of study considerad, which are presented in chapters third, fourth and fifth, toghether with the review of the main conclusions derived from the study and the outline of the main research lines opened by the present work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a novel glucose sensor based on an optical fiber grating with an excessively tilted index fringe structure and its surface modified by glucose oxidase (GOD). The aminopropyltriethoxysilane (APTES) was utilized as binding site for the subsequent GOD immobilization. Confocal microscopy and fluorescence microscope were used to provide the assessment of the effectiveness in modifying the fiber surface. The resonance wavelength of the sensor exhibited red-shift after the binding of the APTES and GOD to the fiber surface and also in the glucose detection process. The red-shift of the resonance wavelength showed a good linear response to the glucose concentration with a sensitivity of 0.298nm(mg/ml)-1 in the very low concentration range of 0.0∼3.0mg/ml. Compared to the previously reported glucose sensor based on the GOD-immobilized long period grating (LPG), the 81° tilted fiber grating (81°-TFG) based sensor has shown a lower thermal cross-talk effect, better linearity and higher Q-factor in sensing response. In addition, its sensitivity for glucose concentration can be further improved by increasing the grating length and/or choosing a higher-order cladding mode for detection. Potentially, the proposed techniques based on 81°-TFG can be developed as sensitive, label free and micro-structural sensors for applications in food safety, disease diagnosis, clinical analysis and environmental monitoring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Baker and Meese (2012) (B&M) provided an empirically driven criticism of the use of two-dimensional (2D) pixel noise in equivalent noise (EN) experiments. Their main objection was that in addition to injecting variability into the contrast detecting mechanisms, 2D noise also invokes gain control processes from a widely tuned contrast gain pool (e.g., Foley, 1994). B&M also developed a zero-dimensional (0D) noise paradigm in which all of the variance is concentrated in the mechanisms involved in the detection process. They showed that this form of noise conformed much more closely to expectations than did a 2D variant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Food safety has always been a social issue that draws great public attention. With the rapid development of wireless communication technologies and intelligent devices, more and more Internet of Things (IoT) systems are applied in the food safety tracking field. However, connection between things and information system is usually established by pre-storing information of things into RFID Tag, which is inapplicable for on-field food safety detection. Therefore, considering pesticide residue is one of the severe threaten to food safety, a new portable, high-sensitivity, low-power, on-field organophosphorus (OP) compounds detection system is proposed in this thesis to realize the on-field food safety detection. The system is designed based on optical detection method by using a customized photo-detection sensor. A Micro Controller Unit (MCU) and a Bluetooth Low Energy (BLE) module are used to quantize and transmit detection result. An Android Application (APP) is also developed for the system to processing and display detection result as well as control the detection process. Besides, a quartzose sample container and black system box are also designed and made for the system demonstration. Several optimizations are made in wireless communication, circuit layout, Android APP and industrial design to realize the mobility, low power and intelligence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most significant research topics in computer vision is object detection. Most of the reported object detection results localise the detected object within a bounding box, but do not explicitly label the edge contours of the object. Since object contours provide a fundamental diagnostic of object shape, some researchers have initiated work on linear contour feature representations for object detection and localisation. However, linear contour feature-based localisation is highly dependent on the performance of linear contour detection within natural images, and this can be perturbed significantly by a cluttered background. In addition, the conventional approach to achieving rotation-invariant features is to rotate the feature receptive field to align with the local dominant orientation before computing the feature representation. Grid resampling after rotation adds extra computational cost and increases the total time consumption for computing the feature descriptor. Though it is not an expensive process if using current computers, it is appreciated that if each step of the implementation is faster to compute especially when the number of local features is increasing and the application is implemented on resource limited ”smart devices”, such as mobile phones, in real-time. Motivated by the above issues, a 2D object localisation system is proposed in this thesis that matches features of edge contour points, which is an alternative method that takes advantage of the shape information for object localisation. This is inspired by edge contour points comprising the basic components of shape contours. In addition, edge point detection is usually simpler to achieve than linear edge contour detection. Therefore, the proposed localization system could avoid the need for linear contour detection and reduce the pathological disruption from the image background. Moreover, since natural images usually comprise many more edge contour points than interest points (i.e. corner points), we also propose new methods to generate rotation-invariant local feature descriptors without pre-rotating the feature receptive field to improve the computational efficiency of the whole system. In detail, the 2D object localisation system is achieved by matching edge contour points features in a constrained search area based on the initial pose-estimate produced by a prior object detection process. The local feature descriptor obtains rotation invariance by making use of rotational symmetry of the hexagonal structure. Therefore, a set of local feature descriptors is proposed based on the hierarchically hexagonal grouping structure. Ultimately, the 2D object localisation system achieves a very promising performance based on matching the proposed features of edge contour points with the mean correct labelling rate of the edge contour points 0.8654 and the mean false labelling rate 0.0314 applied on the data from Amsterdam Library of Object Images (ALOI). Furthermore, the proposed descriptors are evaluated by comparing to the state-of-the-art descriptors and achieve competitive performances in terms of pose estimate with around half-pixel pose error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2016.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Business process model repositories capture precious knowledge about an organization or a business domain. In many cases, these repositories contain hundreds or even thousands of models and they represent several man-years of effort. Over time, process model repositories tend to accumulate duplicate fragments, as new process models are created by copying and merging fragments from other models. This calls for methods to detect duplicate fragments in process models that can be refactored as separate subprocesses in order to increase readability and maintainability. This paper presents an indexing structure to support the fast detection of clones in large process model repositories. Experiments show that the algorithm scales to repositories with hundreds of models. The experimental results also show that a significant number of non-trivial clones can be found in process model repositories taken from industrial practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As organizations reach to higher levels of business process management maturity, they often find themselves maintaining repositories of hundreds or even thousands of process models, representing valuable knowledge about their operations. Over time, process model repositories tend to accumulate duplicate fragments (also called clones) as new process models are created or extended by copying and merging fragments from other models. This calls for methods to detect clones in process models, so that these clones can be refactored as separate subprocesses in order to improve maintainability. This paper presents an indexing structure to support the fast detection of clones in large process model repositories. The proposed index is based on a novel combination of a method for process model decomposition (specifically the Refined Process Structure Tree), with established graph canonization and string matching techniques. Experiments show that the algorithm scales to repositories with hundreds of models. The experimental results also show that a significant number of non-trivial clones can be found in process model repositories taken from industrial practice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As organizations reach higher levels of business process management maturity, they often find themselves maintaining very large process model repositories, representing valuable knowledge about their operations. A common practice within these repositories is to create new process models, or extend existing ones, by copying and merging fragments from other models. We contend that if these duplicate fragments, a.k.a. ex- act clones, can be identified and factored out as shared subprocesses, the repository’s maintainability can be greatly improved. With this purpose in mind, we propose an indexing structure to support fast detection of clones in process model repositories. Moreover, we show how this index can be used to efficiently query a process model repository for fragments. This index, called RPSDAG, is based on a novel combination of a method for process model decomposition (namely the Refined Process Structure Tree), with established graph canonization and string matching techniques. We evaluated the RPSDAG with large process model repositories from industrial practice. The experiments show that a significant number of non-trivial clones can be efficiently found in such repositories, and that fragment queries can be handled efficiently.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evidence exists that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication may stem from the fact that the repository describes variants of the same pro- cesses and/or because of copy/pasting activity throughout the lifetime of the repository. Previous work has put forward techniques for identifying duplicate fragments (clones) that can be refactored into shared subprocesses. However, these techniques are limited to finding exact clones. This paper analyzes the prob- lem of approximate clone detection and puts forward two techniques for detecting clusters of approximate clones. Experiments show that the proposed techniques are able to accurately retrieve clusters of approximate clones that originate from copy/pasting followed by independent modifications to the copied fragments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a technique for the automated removal of noise from process execution logs. Noise is the result of data quality issues such as logging errors and manifests itself in the form of infrequent process behavior. The proposed technique generates an abstract representation of an event log as an automaton capturing the direct follows relations between event labels. This automaton is then pruned from arcs with low relative frequency and used to remove from the log those events not fitting the automaton, which are identified as outliers. The technique has been extensively evaluated on top of various auto- mated process discovery algorithms using both artificial logs with different levels of noise, as well as a variety of real-life logs. The results show that the technique significantly improves the quality of the discovered process model along fitness, appropriateness and simplicity, without negative effects on generalization. Further, the technique scales well to large and complex logs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Business processes are prone to continuous and unexpected changes. Process workers may start executing a process differently in order to adjust to changes in workload, season, guidelines or regulations for example. Early detection of business process changes based on their event logs – also known as business process drift detection – enables analysts to identify and act upon changes that may otherwise affect process performance. Previous methods for business process drift detection are based on an exploration of a potentially large feature space and in some cases they require users to manually identify the specific features that characterize the drift. Depending on the explored feature set, these methods may miss certain types of changes. This paper proposes a fully automated and statistically grounded method for detecting process drift. The core idea is to perform statistical tests over the distributions of runs observed in two consecutive time windows. By adaptively sizing the window, the method strikes a trade-off between classification accuracy and drift detection delay. A validation on synthetic and real-life logs shows that the method accurately detects typical change patterns and scales up to the extent it is applicable for online drift detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Composting refers to aerobic degradation of organic material and is one of the main waste treatment methods used in Finland for treating separated organic waste. The composting process allows converting organic waste to a humus-like end product which can be used to increase the organic matter in agricultural soils, in gardening, or in landscaping. Microbes play a key role as degraders during the composting-process, and the microbiology of composting has been studied for decades, but there are still open questions regarding the microbiota in industrial composting processes. It is known that with the traditional, culturing-based methods only a small fraction, below 1%, of the species in a sample is normally detected. In recent years an immense diversity of bacteria, fungi and archaea has been found to occupy many different environments. Therefore the methods of characterising microbes constantly need to be developed further. In this thesis the presence of fungi and bacteria in full-scale and pilot-scale composting processes was characterised with cloning and sequencing. Several clone libraries were constructed and altogether nearly 6000 clones were sequenced. The microbial communities detected in this study were found to differ from the compost microbes observed in previous research with cultivation based methods or with molecular methods from processes of smaller scale, although there were similarities as well. The bacterial diversity was high. Based on the non-parametric coverage estimations, the number of bacterial operational taxonomic units (OTU) in certain stages of composting was over 500. Sequences similar to Lactobacillus and Acetobacteria were frequently detected in the early stages of drum composting. In tunnel stages of composting the bacterial community comprised of Bacillus, Thermoactinomyces, Actinobacteria and Lactobacillus. The fungal diversity was found to be high and phylotypes similar to yeasts were abundantly found in the full-scale drum and tunnel processes. In addition to phylotypes similar to Candida, Pichia and Geotrichum moulds from genus Thermomyces and Penicillium were observed in tunnel stages of composting. Zygomycetes were detected in the pilot-scale composting processes and in the compost piles. In some of the samples there were a few abundant phylotypes present in the clone libraries that masked the rare ones. The rare phylotypes were of interest and a method for collecting them from clone libraries for sequencing was developed. With negative selection of the abundant phylotyps the rare ones were picked from the clone libraries. Thus 41% of the clones in the studied clone libraries were sequenced. Since microbes play a central role in composting and in many other biotechnological processes, rapid methods for characterization of microbial diversity would be of value, both scientifically and commercially. Current methods, however, lack sensitivity and specificity and are therefore under development. Microarrays have been used in microbial ecology for a decade to study the presence or absence of certain microbes of interest in a multiplex manner. The sequence database collected in this thesis was used as basis for probe design and microarray development. The enzyme assisted detection method, ligation-detection-reaction (LDR) based microarray, was adapted for species-level detection of microbes characteristic of each stage of the composting process. With the use of a specially designed control probe it was established that a species specific probe can detect target DNA representing as little as 0.04% of total DNA in a sample. The developed microarray can be used to monitor composting processes or the hygienisation of the compost end product. A large compost microbe sequence dataset was collected and analysed in this thesis. The results provide valuable information on microbial community composition during industrial scale composting processes. The microarray method was developed based on the sequence database collected in this study. The method can be utilised in following the fate of interesting microbes during composting process in an extremely sensitive and specific manner. The platform for the microarray is universal and the method can easily be adapted for studying microbes from environments other than compost.

Relevância:

40.00% 40.00%

Publicador: