969 resultados para Data Flow Algorithm
Resumo:
Data refinements are refinement steps in which a program’s local data structures are changed. Data refinement proof obligations require the software designer to find an abstraction relation that relates the states of the original and new program. In this paper we describe an algorithm that helps a designer find an abstraction relation for a proposed refinement. Given sufficient time and space, the algorithm can find a minimal abstraction relation, and thus show that the refinement holds. As it executes, the algorithm displays mappings that cannot be in any abstraction relation. When the algorithm is not given sufficient resources to terminate, these mappings can help the designer find a suitable abstraction relation. The same algorithm can be used to test an abstraction relation supplied by the designer.
Resumo:
Very often the experimental data are the realization of the process, fully determined by some unknown function, being distorted by hindrances. Treatment and experimental data analysis are substantially facilitated, if these data to represent as analytical expression. The experimental data processing algorithm and the example of using this algorithm for spectrographic analysis of oncologic preparations of blood is represented in this article.
Resumo:
Background As the use of electronic health records (EHRs) becomes more widespread, so does the need to search and provide effective information discovery within them. Querying by keyword has emerged as one of the most effective paradigms for searching. Most work in this area is based on traditional Information Retrieval (IR) techniques, where each document is compared individually against the query. We compare the effectiveness of two fundamentally different techniques for keyword search of EHRs. Methods We built two ranking systems. The traditional BM25 system exploits the EHRs' content without regard to association among entities within. The Clinical ObjectRank (CO) system exploits the entities' associations in EHRs using an authority-flow algorithm to discover the most relevant entities. BM25 and CO were deployed on an EHR dataset of the cardiovascular division of Miami Children's Hospital. Using sequences of keywords as queries, sensitivity and specificity were measured by two physicians for a set of 11 queries related to congenital cardiac disease. Results Our pilot evaluation showed that CO outperforms BM25 in terms of sensitivity (65% vs. 38%) by 71% on average, while maintaining the specificity (64% vs. 61%). The evaluation was done by two physicians. Conclusions Authority-flow techniques can greatly improve the detection of relevant information in EHRs and hence deserve further study.
Resumo:
Registration of point clouds captured by depth sensors is an important task in 3D reconstruction applications based on computer vision. In many applications with strict performance requirements, the registration should be executed not only with precision, but also in the same frequency as data is acquired by the sensor. This thesis proposes theuse of the pyramidal sparse optical flow algorithm to incrementally register point clouds captured by RGB-D sensors (e.g. Microsoft Kinect) in real time. The accumulated errorinherent to the process is posteriorly minimized by utilizing a marker and pose graph optimization. Experimental results gathered by processing several RGB-D datasets validatethe system proposed by this thesis in visual odometry and simultaneous localization and mapping (SLAM) applications.
Resumo:
Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the "unit of accounting" in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size - picophytoplankton (0.5-2 µm in diameter), nanophytoplankton (2-20 µm) and microphytoplankton (20-50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield - 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.
Resumo:
The speed with which data has moved from being scarce, expensive and valuable, thus justifying detailed and careful verification and analysis to a situation where the streams of detailed data are almost too large to handle has caused a series of shifts to occur. Legal systems already have severe problems keeping up with, or even in touch with, the rate at which unexpected outcomes flow from information technology. The capacity to harness massive quantities of existing data has driven Big Data applications until recently. Now the data flows in real time are rising swiftly, become more invasive and offer monitoring potential that is eagerly sought by commerce and government alike. The ambiguities as to who own this often quite remarkably intrusive personal data need to be resolved – and rapidly - but are likely to encounter rising resistance from industrial and commercial bodies who see this data flow as ‘theirs’. There have been many changes in ICT that has led to stresses in the resolution of the conflicts between IP exploiters and their customers, but this one is of a different scale due to the wide potential for individual customisation of pricing, identification and the rising commercial value of integrated streams of diverse personal data. A new reconciliation between the parties involved is needed. New business models, and a shift in the current confusions over who owns what data into alignments that are in better accord with the community expectations. After all they are the customers, and the emergence of information monopolies needs to be balanced by appropriate consumer/subject rights. This will be a difficult discussion, but one that is needed to realise the great benefits to all that are clearly available if these issues can be positively resolved. The customers need to make these data flow contestable in some form. These Big data flows are only going to grow and become ever more instructive. A better balance is necessary, For the first time these changes are directly affecting governance of democracies, as the very effective micro targeting tools deployed in recent elections have shown. Yet the data gathered is not available to the subjects. This is not a survivable social model. The Private Data Commons needs our help. Businesses and governments exploit big data without regard for issues of legality, data quality, disparate data meanings, and process quality. This often results in poor decisions, with individuals bearing the greatest risk. The threats harbored by big data extend far beyond the individual, however, and call for new legal structures, business processes, and concepts such as a Private Data Commons. This Web extra is the audio part of a video in which author Marcus Wigan expands on his article "Big Data's Big Unintended Consequences" and discusses how businesses and governments exploit big data without regard for issues of legality, data quality, disparate data meanings, and process quality. This often results in poor decisions, with individuals bearing the greatest risk. The threats harbored by big data extend far beyond the individual, however, and call for new legal structures, business processes, and concepts such as a Private Data Commons.
Resumo:
Os controladores de caudal, normalmente implementados em sistemas Supervisory control and data acquisition (SCADA), apresentam uma grande relevância no controlo automático de canais de adução. Para garantir que os controladores de caudal sejam fiáveis em todo o seu domínio de funcionamento (em situações de escoamento com ressalto livre ou submerso e de transição entre escoamentos com ressalto livre e ressalto submerso) foram comparados os resultados dos ensaios experimentais com diferentes métodos de cálculo da vazão em comportas e/ou sobre soleiras. O programa de ensaios foi realizado nos canais laboratorial e experimental da Universidade de Évora. Foram realizados ensaios em comportas planas verticais e em soleiras do tipo Waterways Experiment Station (WES) controladas ou não por comportas planas verticais. Em ambos os casos, foram contempladas as situações de escoamento com ressalto livre e submerso. Os resultados obtidos mostram que: a) para as comportas, o método Rajaratnam e Subramanya (1967a) conduz a bons resultados com um erro percentual médio absoluto MAPE < 1% para o escoamento com ressalto livre e MAPE < 4% para o submerso; a transição entre escoamentos foi identificada corretamente por este método; b) para as soleiras, obtiveram-se bons resultados para o escoamento com ressalto livre para o método USACE (1987), com MAPE < 2%, e para o submerso através do método Alves e Martins (2011), com MAPE < 5%; a transição entre escoamentos pode ser considerada adequada de acordo com a curva experimental de Grace (1963); c) para soleiras controladas por comporta, conseguiram-se bons resultados para o escoamento com ressalto livre recorrendo à equação dos orifícios de pequenas dimensões, com MAPE < 1, 5%, e para o submerso com a equação dos orifícios totalmente submersos com MAPE < 1, 6%; em ambos os casos foi necessária calibração do coeficiente de vazão; a transição entre escoamentos foi adequada pelo método de Grace (1963). Com base nos resultados obtidos, foi possível definir um algoritmo de vazão generalizado para comportas e/ou soleiras que permite a determinação da vazão para as situações de escoamento com ressalto livre e submerso incluindo a transição entre escoamentos; ABSTRACT: Flow controllers, usually implemented in Supervisory Control and Data Acquisition (SCADA) systems, are very important in the automatic control of irrigation canal systems. To ensure that flow controllers are reliable for the entire operating range (free or submerged flow and flow transitions) the experimental results were compared with different methods of flow measurement for gates and/or weirs. The test program was conducted in the laboratory flume and in the automatic canal of the University of ´Evora. Tests were carried in sluice gates and in broad-crested weirs controlled or not by sluice gate. In both cases free and submerged flow conditions were analyzed. The results show that: a) for the sluice gates, the method of Rajaratnam e Subramanya (1967a) leads to good results with a mean absolute percentage error (MAPE) < 1% for free flow and MAPE < 4% for submerged flow. The transition between flows is correctly identified by this method; b) for the uncontrolled weir, good results were obtained for free flow with the method USACE (1987) with MAPE < 2%, and for submerged flow by the method Alves e Martins (2011) with MAPE < 5%. The transition between flows can be accurately defined by the experimental curve of Grace (1963); c) for the controlled weir, good results were achieved for the free flow with the small orifice equation with MAPE < 1.5% and for submerged flow with the submerged orifice equation with MAPE < 1.6%; in both cases the calibration of the discharge coefficient is needed. The transition between flows can be accomplished through Grace (1963) method. Based on the obtained results, it was possible to define a generalized flow algorithm for gates and/or weirs that allows flow determination for free and submerged flow conditions including the transition between flows.
Resumo:
significant amount of Expendable Bathythermograph (XBT) data has been collected in the Mediterranean Sea since 1999 in the framework of operational oceanography activities. The management and storage of such a volume of data poses significant challenges and opportunities. The SeaDataNet project, a pan-European infrastructure for marine data diffusion, provides a convenient way to avoid dispersion of these temperature vertical profiles and to facilitate access to a wider public. The XBT data flow, along with the recent improvements in the quality check procedures and the consistence of the available historical data set are described. The main features of SeaDataNet services and the advantage of using this system for long-term data archiving are presented. Finally, focus on the Ligurian Sea is included in order to provide an example of the kind of information and final products devoted to different users can be easily derived from the SeaDataNet web portal.
Resumo:
At the core of the analysis task in the development process is information systems requirements modelling, Modelling of requirements has been occurring for many years and the techniques used have progressed from flowcharting through data flow diagrams and entity-relationship diagrams to object-oriented schemas today. Unfortunately, researchers have been able to give little theoretical guidance only to practitioners on which techniques to use and when. In an attempt to address this situation, Wand and Weber have developed a series of models based on the ontological theory of Mario Bunge-the Bunge-Wand-Weber (BWW) models. Two particular criticisms of the models have persisted however-the understandability of the constructs in the BWW models and the difficulty in applying the models to a modelling technique. This paper addresses these issues by presenting a meta model of the BWW constructs using a meta language that is familiar to many IS professionals, more specific than plain English text, but easier to understand than the set-theoretic language of the original BWW models. Such a meta model also facilitates the application of the BWW theory to other modelling techniques that have similar meta models defined. Moreover, this approach supports the identification of patterns of constructs that might be common across meta models for modelling techniques. Such findings are useful in extending and refining the BWW theory. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
O desenvolvimento actual de aplicações paralelas com processamento intensivo (HPC - High Performance Computing) para alojamento em computadores organizados em Cluster baseia-se muito no modelo de passagem de mensagens, do qual é de realçar os esforços de definição de standards, por exemplo, MPI - Message - Passing Interface. Por outro lado, com a generalização do paradigma de programação orientado aos objectos para ambientes distribuídos (Java RMI, .NET Remoting), existe a possibilidade de considerar que a execução de uma aplicação, de processamento paralelo e intensivo, pode ser decomposta em vários fluxos de execução paralela, em que cada fluxo é constituído por uma ou mais tarefas executadas no contexto de objectos distribuídos. Normalmente, em ambientes baseados em objectos distribuídos, a especificação, controlo e sincronização dos vários fluxos de execução paralela, é realizada de forma explicita e codificada num programa principal (hard-coded), dificultando possíveis e necessárias modificações posteriores. No entanto, existem, neste contexto, trabalhos que propõem uma abordagem de decomposição, seguindo o paradigma de workflow com interacções entre as tarefas por, entre outras, data-flow, control-flow, finite - state - machine. Este trabalho consistiu em propor e explorar um modelo de execução, sincronização e controlo de múltiplas tarefas, que permita de forma flexível desenhar aplicações de processamento intensivo, tirando partido da execução paralela de tarefas em diferentes máquinas. O modelo proposto e consequente implementação, num protótipo experimental, permite: especificar aplicações usando fluxos de execução; submeter fluxos para execução e controlar e monitorizar a execução desses fluxos. As tarefas envolvidas nos fluxos de execução podem executar-se num conjunto de recursos distribuídos. As principais características a realçar no modelo proposto, são a expansibilidade e o desacoplamento entre as diferentes componentes envolvidas na execução dos fluxos de execução. São ainda descritos casos de teste que permitiram validar o modelo e o protótipo implementado. Tendo consciência da necessidade de continuar no futuro esta linha de investigação, este trabalho é um contributo para demonstrar que o paradigma de workflow é adequado para expressar e executar, de forma paralela e distribuída, aplicações complexas de processamento intensivo.
Resumo:
Thesis submitted in fulfilment of the requirements for the Degree of Master of Science in Computer Science
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
An online algorithm for determining respiratory mechanics in patients using non-invasive ventilation (NIV) in pressure support mode was developed and embedded in a ventilator system. Based on multiple linear regression (MLR) of respiratory data, the algorithm was tested on a patient bench model under conditions with and without leak and simulating a variety of mechanics. Bland-Altman analysis indicates reliable measures of compliance across the clinical range of interest (± 11-18% limits of agreement). Resistance measures showed large quantitative errors (30-50%), however, it was still possible to qualitatively distinguish between normal and obstructive resistances. This outcome provides clinically significant information for ventilator titration and patient management.
Resumo:
Debido al gran número de transistores por mm2 que hoy en día podemos encontrar en las GPU convencionales, en los últimos años éstas se vienen utilizando para propósitos generales gracias a que ofrecen un mayor rendimiento para computación paralela. Este proyecto implementa el producto sparse matrix-vector sobre OpenCL. En los primeros capítulos hacemos una revisión de la base teórica necesaria para comprender el problema. Después veremos los fundamentos de OpenCL y del hardware sobre el que se ejecutarán las librerías desarrolladas. En el siguiente capítulo seguiremos con una descripción del código de los kernels y de su flujo de datos. Finalmente, el software es evaluado basándose en comparativas con la CPU.
Resumo:
BACKGROUND: Specialized pediatric cancer centers (PCCs) are thought to be essential to obtain state-of-the-art care for children and adolescents. We determined the proportion of childhood cancer patients not treated in a PCC, and described their characteristics and place of treatment. PROCEDURE: The Swiss Childhood Cancer Registry (SCCR) registers all children treated in Swiss PCCs. The regional cancer registries (covering 14/26 cantons) register all cancer patients of a region. The children of the SCCR with data from 7 regions (11 cantons) were compared, using specialized software for record linkage. All children <16 years of age at diagnosis with primary malignant tumors, diagnosed between 1990 and 2004, and living in one of these regions were included in the analysis. RESULTS: 22.1% (238/1,077) of patients recorded in regional registries were not registered in the SCCR. Of these, 15.7% (169/1,077) had never been in a PCC while 6.4% (69/1,077) had been in a PCC but were not registered in the SCCR, due to incomplete data flow. In all diagnostic groups and in all age groups, a certain proportion of children was treated outside a PCC, but this proportion was largest in children suffering from malignant bone tumors/soft tissue sarcomas and from malignant epithelial neoplasms, and in older children. The proportion of patients treated in a PCC increased over the study period (P < 0.0001). CONCLUSIONS: One in six childhood cancer patients in Switzerland was not treated in a PCC. Whether these patients have different treatment outcomes remained unclear.