965 resultados para DOSAGE COMPENSATION
Resumo:
This study compared an enzyme-linked immunosorbent assay (ELISA) to a liquid chromatography-tandem mass spectrometry (LC/MS/MS) technique for measurement of tacrolimus concentrations in adult kidney and liver transplant recipients, and investigated how assay choice influenced pharmacokinetic parameter estimates and drug dosage decisions. Tacrolimus concentrations measured by both ELISA and LC/MS/MS from 29 kidney (n = 98 samples) and 27 liver (n = 97 samples) transplant recipients were used to evaluate the performance of these methods in the clinical setting. Tacrolimus concentrations measured by the two techniques were compared via regression analysis. Population pharmacokinetic models were developed independently using ELISA and LC/MS/MS data from 76 kidney recipients. Derived kinetic parameters were used to formulate typical dosing regimens for concentration targeting. Dosage recommendations for the two assays were compared. The relation between LC/MS/MS and ELISA measurements was best described by the regression equation ELISA = 1.02 . (LC/MS/MS) + 0.14 in kidney recipients, and ELISA = 1.12 . (LC/MS/MS) - 0.87 in liver recipients. ELISA displayed less accuracy than LC/MS/MS at lower tacrolimus concentrations. Population pharmacokinetic models based on ELISA and LC/MS/MS data were similar with residual random errors of 4.1 ng/mL and 3.7 ng/mL, respectively. Assay choice gave rise to dosage prediction differences ranging from 0% to 30%. ELISA measurements of tacrolimus are not automatically interchangeable with LC/MS/MS values. Assay differences were greatest in adult liver recipients, probably reflecting periods of liver dysfunction and impaired biliary secretion of metabolites. While the majority of data collected in this study suggested assay differences in adult kidney recipients were minimal, findings of ELISA dosage underpredictions of up to 25% in the long term must be investigated further.
Resumo:
This study evaluated the degree to which the disturbance to posture from respiration is compensated for in healthy normals and whether this is different in people with recurrent low back pain (LBP), and to compare the changes when respiratory demand is increased. Angular displacement of the lumbar spine and hips, and motion of the centre of pressure (COP), were recorded with high resolution and respiratory phase was recorded from ribcage motion. With subjects standing in a relaxed posture, recordings were made during quiet breathing, while breathing with increased dead-space to induce hypercapnoea, and while subjects voluntarily increased their respiration to match ribcage expansion that was induced in the hypercapnoea condition. The relationship between respiration and the movement parameters was measured from the coherence between breathing and COP and angular motion at the frequency of respiration, and from averages triggered from the respiratory data. Small angular changes in the lumbopelvic and hip angles were evident at the frequency of respiration in both groups. However, in quiet standing, the LBP subjects had a greater displacement of their COP that was associated with respiration than the control subjects. The LBP group had a trend for less hip motion. There were no changes in the movement parameters when respiratory demand increased involuntarily via hypercapnoea, but when respiration increased voluntarily, the amplitude of motion and the displacement of the COP increased in both groups. The present data suggest that the postural compensation to respiration counteracts at least part of the disturbance to posture caused by respiration and that this compensation may be less effective in people with LBP.
Resumo:
Over the past 25 years, expatriate managers have voiced increased disenchantment with their compensation packages whíle abroad. This paper takes a prescriptive approach, outlíning severa I elements of a successful human resources strategy and stressing key ingredients of effective international compensation programs. Particular ettention is given to the adherence of cultural values and distrlbutive justice when working across nations and cultures.
Resumo:
Fluorescent protein microscopy imaging is nowadays one of the most important tools in biomedical research. However, the resulting images present a low signal to noise ratio and a time intensity decay due to the photobleaching effect. This phenomenon is a consequence of the decreasing on the radiation emission efficiency of the tagging protein. This occurs because the fluorophore permanently loses its ability to fluoresce, due to photochemical reactions induced by the incident light. The Poisson multiplicative noise that corrupts these images, in addition with its quality degradation due to photobleaching, make long time biological observation processes very difficult. In this paper a denoising algorithm for Poisson data, where the photobleaching effect is explicitly taken into account, is described. The algorithm is designed in a Bayesian framework where the data fidelity term models the Poisson noise generation process as well as the exponential intensity decay caused by the photobleaching. The prior term is conceived with Gibbs priors and log-Euclidean potential functions, suitable to cope with the positivity constrained nature of the parameters to be estimated. Monte Carlo tests with synthetic data are presented to characterize the performance of the algorithm. One example with real data is included to illustrate its application.
Resumo:
This paper addresses the voltage droop compensation associated with long pulses generated by solid-stated based high-voltage Marx topologies. In particular a novel design scheme for voltage droop compensation in solid-state based bipolar Marx generators, using low-cost circuitry design and control, is described. The compensation consists of adding one auxiliary PWM stage to the existing Marx stages, without changing the modularity and topology of the circuit, which controls the output voltage and a LC filter that smoothes the voltage droop in both the positive and negative output pulses. Simulation results are presented for 5 stages Marx circuit using 1 kV per stage, with 1 kHz repetition rate and 10% duty cycle.
Resumo:
This paper presents a variable speed autonomous squirrel cage generator excited by a current-controlled voltage source inverter to be used in stand-alone micro-hydro power plants. The paper proposes a system control strategy aiming to properly excite the machine as well as to achieve the load voltage control. A feed-forward control sets the appropriate generator flux by taking into account the actual speed and the desired load voltage. A load voltage control loop is used to adjust the generated active power in order to sustain the load voltage at a reference value. The control system is based on a rotor flux oriented vector control technique which takes into account the machine saturation effect. The proposed control strategy and the adopted system models were validated both by numerical simulation and by experimental results obtained from a laboratory prototype. Results covering the prototype start-up, as well as its steady-state and dynamical behavior are presented. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a methodology to address reactive power compensation using Evolutionary Particle Swarm Optimization (EPSO) technique programmed in the MATLAB environment. The main objective is to find the best operation point minimizing power losses with reactive power compensation, subjected to all operational constraints, namely full AC power flow equations, active and reactive power generation constraints. The methodology has been tested with the IEEE 14 bus test system demonstrating the ability and effectiveness of the proposed approach to handle the reactive power compensation problem.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
Fluorescence confocal microscopy images present a low signal to noise ratio and a time intensity decay due to the so called photoblinking and photobleaching effects. These effects, together with the Poisson multiplicative noise that corrupts the images, make long time biological observation processes very difficult.
Resumo:
A square-wave voltammetric (SWV) method and a flow injection analysis system with amperometric detection were developed for the determination of tramadol hydrochloride. The SWV method enables the determination of tramadol over the concentration range of 15-75 µM with a detection limit of 2.2 µM. Tramadol could be determined in concentrations between 9 and 50 µM at a sampling rate of 90 h-1, with a detection limit of 1.7 µM using the flow injection system. The electrochemical methods developed were successfully applied to the determination of tramadol in pharmaceutical dosage forms, without any pre-treatment of the samples. Recovery trials were performed to assess the accuracy of the results; the values were between 97 and 102% for both methods.
Resumo:
The reduction of luvastatin (FLV) at a hanging mercury-drop electrode (HMDE) was studied by square-wave adsorptive-stripping voltammetry (SWAdSV). FLV can be accumulated and reduced at the electrode, with a maximum peak current intensity at a potential of approximately 1.26V vs. AgCl=Ag, in an aqueous electrolyte solution of pH 5.25. The method shows linearity between peak current intensity and FLV concentration between 1.0 10 8 and 2.7 10 6 mol L 1. Limits of detection (LOD) and quantification (LOQ) were found to be 9.9 10 9 mol L 1 and 3.3 10 8 mol L 1, respectively. Furthermore, FLV oxidation at a glassy carbon electrode surface was used for its hydrodynamic monitoring by amperometric detection in a flow-injection system. The amperometric signal was linear with FLV concentration over the range 1.0 10 6 to 1.0 10 5 mol L 1, with an LOD of 2.4 10 7 mol L 1 and an LOQ of 8.0 10 7 mol L 1. A sample rate of 50 injections per hour was achieved. Both methods were validated and showed to be precise and accurate, being satisfactorily applied to the determination of FLV in a commercial pharmaceutical.
Resumo:
One fundamental idea of service-oriented computing is that applications should be developed by composing already available services. Due to the long running nature of service interactions, a main challenge in service composition is ensuring correctness of transaction recovery. In this paper, we use a process calculus suitable for modelling long running transactions with a recovery mechanism based on compensations. Within this setting, we discuss and formally state correctness criteria for compensable processes compositions, assuming that each process is correct with respect to transaction recovery. Under our theory, we formally interpret self-healing compositions, that can detect and recover from faults, as correct compositions of compensable processes. Moreover, we develop an automated verification approach and we apply it to an illustrative case study.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics