975 resultados para DISCRETE LYAPUNOV FUNCTION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Researchers have engrossed fractional-order modeling because of its ability to capture phenomena that are nearly impossible to describe owing to its long-term memory and inherited properties. Motivated by the research in fractional modeling, a fractional-order prototype for a flexible satellite whose dynamics are governed by fractional differential equations is proposed for the first time. These relations are derived using fractional attitude dynamic description of rigid body simultaneously coupled with the fractional Lagrange equation that governs the vibration of the appendages. Two attitude controls are designed in the presence of the faults and uncertainties of the system. The first is the fractional-order feedback linearization controller, in which the stability of the internal dynamics of the system is proved. The second is the fractional-order sliding mode control, whose asymptotic stability is demonstrated using the quadratic Lyapunov function. Several nonlinear simulations are implemented to analyze the performance of the proposed controllers.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An attempt is made by the researcher to establish a theory of discrete functions in the complex plane. Classical analysis q-basic theory, monodiffric theory, preholomorphic theory and q-analytic theory have been utilised to develop concepts like differentiation, integration and special functions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This Letter reports an investigation on the optical properties of copper nanocubes as a function of size as modeled by the discrete dipole approximation. In the far-field, our results showed that the extinction resonances shifted from 595 to 670 nm as the size increased from 20 to 100 nm. Also, the highest optical efficiencies for absorption and scattering were obtained for nanocubes that were 60 and 100 nm in size, respectively. In the near-field, the electric-field amplitudes were investigated considering 514, 633 and 785 nm as the excitation wavelengths. The E-fields increased with size, being the highest at 633 nm. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present new methodologies to generate rational function approximations of broadband electromagnetic responses of linear and passive networks of high-speed interconnects, and to construct SPICE-compatible, equivalent circuit representations of the generated rational functions. These new methodologies are driven by the desire to improve the computational efficiency of the rational function fitting process, and to ensure enhanced accuracy of the generated rational function interpolation and its equivalent circuit representation. Toward this goal, we propose two new methodologies for rational function approximation of high-speed interconnect network responses. The first one relies on the use of both time-domain and frequency-domain data, obtained either through measurement or numerical simulation, to generate a rational function representation that extrapolates the input, early-time transient response data to late-time response while at the same time providing a means to both interpolate and extrapolate the used frequency-domain data. The aforementioned hybrid methodology can be considered as a generalization of the frequency-domain rational function fitting utilizing frequency-domain response data only, and the time-domain rational function fitting utilizing transient response data only. In this context, a guideline is proposed for estimating the order of the rational function approximation from transient data. The availability of such an estimate expedites the time-domain rational function fitting process. The second approach relies on the extraction of the delay associated with causal electromagnetic responses of interconnect systems to provide for a more stable rational function process utilizing a lower-order rational function interpolation. A distinctive feature of the proposed methodology is its utilization of scattering parameters. For both methodologies, the approach of fitting the electromagnetic network matrix one element at a time is applied. It is shown that, with regard to the computational cost of the rational function fitting process, such an element-by-element rational function fitting is more advantageous than full matrix fitting for systems with a large number of ports. Despite the disadvantage that different sets of poles are used in the rational function of different elements in the network matrix, such an approach provides for improved accuracy in the fitting of network matrices of systems characterized by both strongly coupled and weakly coupled ports. Finally, in order to provide a means for enforcing passivity in the adopted element-by-element rational function fitting approach, the methodology for passivity enforcement via quadratic programming is modified appropriately for this purpose and demonstrated in the context of element-by-element rational function fitting of the admittance matrix of an electromagnetic multiport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To determine somesthetic, olfactory, gustative and salivary abnormalities in patients with burning mouth syndrome (BMS), idiopathic trigeminal neuralgia (ITN) and trigeminal postherpetic neuralgia (PHN). SUBJECTS AND METHODS: Twenty patients from each group (BMS, ITN, PHN) and 60 healthy controls were evaluated with a systematized quantitative approach of thermal (cold and warm), mechanical, pain, gustation, olfaction and salivary flow; data were analyzed with ANOVA, Tukey, Kruskal Wallis and Dunn tests with a level of significance of 5%. RESULTS: There were no salivary differences among the groups with matched ages; the cold perception was abnormal only at the mandibular branch of PHN (P = 0.001) and warm was abnormal in all trigeminal branches of PHN and BMS; mechanical sensitivity was altered at the mandibular branch of PHN and in all trigeminal branches of BMS. The salty, sweet and olfactory thresholds were higher in all studied groups; the sour threshold was lower and there were no differences of bitter. CONCLUSION: All groups showed abnormal thresholds of gustation and olfaction; somesthetic findings were discrete in ITN and more common in PHN and BMS; central mechanisms of balance of sensorial inputs might be underlying these observations. Oral Diseases (2010) 16, 482-487

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the broadband characteristic of chaotic signals, many of the methods that have been proposed for synchronizing chaotic systems do not usually present a satisfactory performance when applied to bandlimited communication channels. Here, the effects of bandwidth limitations imposed by the channel on the synchronous solution of a discrete-time chaotic master-slave network are investigated. The discrete-time system considered in this study is the Henon map. It is analytically shown that synchronism can be achieved in such a network by introducing a digital filter in the feedback loop responsible for generating the chaotic signal that will be sent to the slave node. Numerical simulations relating the filter parameters, such as its order and cut-off frequency, to the maximum Lyapunov exponent of the master node, which determines if the transmitted signal is chaotic or not, are also presented. These results can be useful for practical communication schemes based on chaos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anisotropic norm of a linear discrete-time-invariant system measures system output sensitivity to stationary Gaussian input disturbances of bounded mean anisotropy. Mean anisotropy characterizes the degree of predictability (or colouredness) and spatial non-roundness of the noise. The anisotropic norm falls between the H-2 and H-infinity norms and accommodates their loss of performance when the probability structure of input disturbances is not exactly known. This paper develops a method for numerical computation of the anisotropic norm which involves linked Riccati and Lyapunov equations and an associated special type equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The outer-sphere redox behaviour of a series of [LnCoIII-NCFeII(CN)(5)](-) (L-n = n-membered pentadentate aza-macrocycle) complexes have been studied as a function of pH and oxidising agent. All the dinuclear complexes show a double protonation process at pH approximate to 2 that produces a shift in their UV/Vis spectra. Oxidation of the different non-protonated and diprotonated complexes has been carried out with peroxodisulfate, and of the non-protonated complexes also with trisoxalatocobaltate(III). The results are in agreement with predictions from the Marcus theory. The oxidation of [Fe(phen)(3)](3+) and [IrCl6](2-) is too fast to be measured, although for the latter the transient observation of the process has been achieved at pH = 0. The study of the kinetics of the outer-sphere redox process, with the S2O82- and [Co(ox)(3)](3-) oxidants, has been carried out as a function of pH, temperature, and pressure. As a whole, the values found for the activation volumes, entropies, and enthalpies are in the following margins, for the diprotonated and non-protonated dinuclear complexes, respectively: DeltaV(not equal) from 11 to 13 and 15 to 20 cm(3) mol(-1); DeltaS(not equal) from 110 to 30 and -60 to -90 J K-1 mol(-1); DeltaH(not equal) from 115 to 80 and 50 to 65 kJ.mol(-1). The thermal activation parameters are clearly dominated by the electrostriction occurring on outer-sphere precursor formation, while the trends found for the values of the volume of activation indicate an important degree of tuning due to the charge distribution during the electron transfer process. The special arrangement on the amine ligands in the isomer trans[(L14CoNCFeII)-N-III(CN)(5)](-) accounts for important differences in solvent-assisted hydrogen bonding occurring within the outer-sphere redox process, as has been established in redox reactions of similar compounds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IEE Proceedings - Vision, Image, and Signal Processing, Vol. 147, nº 1

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For an interval map, the poles of the Artin-Mazur zeta function provide topological invariants which are closely connected to topological entropy. It is known that for a time-periodic nonautonomous dynamical system F with period p, the p-th power [zeta(F) (z)](p) of its zeta function is meromorphic in the unit disk. Unlike in the autonomous case, where the zeta function zeta(f)(z) only has poles in the unit disk, in the p-periodic nonautonomous case [zeta(F)(z)](p) may have zeros. In this paper we introduce the concept of spectral invariants of p-periodic nonautonomous discrete dynamical systems and study the role played by the zeros of [zeta(F)(z)](p) in this context. As we will see, these zeros play an important role in the spectral classification of these systems.