999 resultados para DI(N-BUTYL) PHTHALATE
Resumo:
Nine of the compounds [M(L2−)(p-cymene)] (M = Ru, Os, L2− = 4,6-di-tert-butyl-N-aryl-o-amidophenolate) were prepared and structurally characterized (Ru complexes) as coordinatively unsaturated, formally 16 valence electron species. On L2−-ligand based oxidation to EPR-active iminosemiquinone radical complexes, the compounds seek to bind a donor atom (if available) from the N-aryl substituent, as structurally certified for thioether and selenoether functions, or from the donor solvent. Simulated cyclic voltammograms and spectroelectrochemistry at ambient and low temperatures in combination with DFT results confirm a square scheme behavior (ECEC mechanism) involving the Ln ligand as the main electron transfer site and the metal with fractional (δ) oxidation as the center for redox-activated coordination. Attempts to crystallize [Ru(Cym)(QSMe)](PF6) produced single crystals of [RuIII(QSMe •−)2](PF6) after apparent dissociation of the arene ligand.
Resumo:
Ocimum basilicum L., popularly known as sweet basil, is a Lamiaceae species whose essential oil is mainly composed of monoterpenes, sesquiterpenes and phenylpropanoids. The contents of these compounds can be affected by abiotic and biotic factors such as infections caused by viruses. The main goal of this research was an investigation of the effects of viral infection on the essential oil profile of common basil. Seeds of O. basilicum L. cv. Genovese were sowed and kept in a greenhouse. Plants presenting two pairs of leaves above the cotyledons were inoculated with an unidentified virus isolated from a field plant showing chlorotic yellow spots and foliar deformation. Essential oils of healthy and infected plants were extracted by hydrodistillation and analyzed by GCMS. Changes in essential oil composition due to viral infection were observed. Methyleugenol and p-cresol,2,6-di-tert-butyl were the main constituents. However, methyleugenol contents were significantly decreased in infected plants.
Resumo:
In Chapter 1, rhodium nanoparticles were supported on multiwalled carbon nanotubes (MWCNTs) and bound to the magnetic core-shell system Fe3O4@TiO2. The composite Fe3O4@TiO2-Rh-MWCNT and the intermediates were characterized by SEM, EDS and TEM. Their catalytic activity was studied using i) the hydrogenation transfer of nitroarenes and cyclohexene in the presence of hydrazine hydrate; ii) the reduction of 2-nitrophenol with NaBH4; and iii) the decoloration of pigments in the presence of hydrogen peroxide. The results were monitored by gas chromatography (i) and UV Visible (ii and iii). In the second chapter, the catalytic activity of six oxidovanadium(V) aroylhydrazone complexes, viz. [VOL1(OEt)][VOL1(OEt)(EtOH)] (1), [VOL2(OEt)] (2), [Et3NH][VO2L1] (3), [VO2(H2L2)]2·EtOH (4), [VOL1(µ -O)VOL1] (5) and [VOL2(µ -O)VOL2] (6) (H2L1 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2hydroxybenzohydrazide and H2L2 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2 aminobenzohydrazide), anchored on nanodiamonds with different treatments, was studied towards the microwave-assisted partial oxidation of 1-phenylethanol to acetophenone in the presence of tert-butyl hydroperoxide (TBHP) as oxidant. A high selectivity for acetophenone was achieved for the optimized conditions. The possibility of recycling and reuse the heterogeneous catalysts was also investigated. In chapter 3, the catalytic activity of gold nanoparticles supported at different metal oxides, such as Fe2O3, Al2O3 ZnO or TiO2, was studied for the above reaction. The effect of the support, quantity of the catalyst and temperature was investigated. The recyclability of the gold catalysts was also studied. In the last chapter, a new copper nanocomposite with functionalized mutiwalled carbon nanotubes (Cu-MWCNT) was synthesized using a microwave assisted polyol method. The characterization was performed using XRD and SEM. The catalytic activity of Cu-MWCNT was studied through the degradation of pigments, such as amaranth, brilliant blue, indigo, tartrazine and methylene blue.
Resumo:
Ocimum basilicum L., popularly known as sweet basil, is a Lamiaceae species whose essential oil is mainly composed of monoterpenes, sesquiterpenes and phenylpropanoids. The contents of these compounds can be affected by abiotic and biotic factors such as infections caused by viruses. The main goal of this research was an investigation of the effects of viral infection on the essential oil profile of common basil. Seeds of O. basilicum L. cv. Genovese were sowed and kept in a greenhouse. Plants presenting two pairs of leaves above the cotyledons were inoculated with an unidentified virus isolated from a field plant showing chlorotic yellow spots and foliar deformation. Essential oils of healthy and infected plants were extracted by hydrodistillation and analyzed by GCMS. Changes in essential oil composition due to viral infection were observed. Methyleugenol and p-cresol,2,6-di-tert-butyl were the main constituents. However, methyleugenol contents were significantly decreased in infected plants.
Resumo:
The reduction of benzenesulfonyl derivatives of n-butylamine and N,N-di-n-butylamine with nitro substituents at the 2, 3 and 4 positions of the phenyl ring in N,N-dimethylformamide is reported. The N,N-di-n-butyl-4- and N-n-butyl-2-nitrobenzenesulfonamides are reduced in two cathodic steps. The first one, at about -0.90 V vs. SCE, a reversible one-electron process, gives a stable anion radical. The second reduction step at -1.70 V vs. SCE leads to cleavage of the S-N bond in good yields (> 70%). It is shown that the reduction of the N-n-butyl-3- and N-n-butyl-4-nitrobenzenesulfonamide is different, with three reduction steps. The first reduction step occurs with the formation of an unstable anion radical, which decomposes via N-H bond cleavage. The reduction of this sulfonamide anion occurs at -1.16 V vs. SCE and the third cathodic step arises at -1.70 V vs. SCE when the remaining radical anion is reduced to its dianion. The S-N bond cleavage is rapid but is always a minor process. The mechanisms of the reduction are discussed.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Aim of this thesis was to further extend the applicability of the Fourier-transform (FT) rheology technique especially for non-linear mechanical characterisation of polymeric materials on the one hand and to investigated the influence of the degree of branching on the linear and non-linear relaxation behaviour of polymeric materials on the other hand. The latter was achieved by employing in particular FT-rheology and other rheological techniques to variously branched polymer melts and solutions. For these purposes, narrowly distributed linear and star-shaped polystyrene and polybutadiene homo-polymers with varying molecular weights were anionically synthesised using both high-vacuum and inert atmosphere techniques. Furthermore, differently entangled solutions of linear and star-shaped polystyrenes in di-sec-octyl phthalate (DOP) were prepared. The several linear polystyrene solutions were measured under large amplitude oscillatory shear (LAOS) conditions and the non-linear torque response was analysed in the Fourier space. Experimental results were compared with numerical predictions performed by Dr. B. Debbaut using a multi-mode differential viscoelastic fluid model obeying the Giesekus constitutive equation. Apart from the analysis of the relative intensities of the harmonics, a detailed examination of the phase information content was developed. Further on, FT-rheology allowed to distinguish polystyrene melts and solutions due to their different topologies where other rheological measurements failed. Significant differences occurred under LAOS conditions as particularly reflected in the phase difference of the third harmonic, ¶3, which could be related to shear thinning and shear thickening behaviour.
Resumo:
Die vorliegende Dissertation beinhaltet Anwendungen der Quantenchemie und methodische Entwicklungen im Bereich der "Coupled-Cluster"-Theorie zu den folgenden Themen: 1.) Die Bestimmung von Geometrieparametern in wasserstoffverbrückten Komplexen mit Pikometer-Genauigkeit durch Kopplung von NMR-Experimenten und quantenchemischen Rechnungen wird an zwei Beispielen dargelegt. 2.) Die hierin auftretenden Unterschiede in Theorie und Experiment werden diskutiert. Hierzu wurde die Schwingungsmittelung des Dipolkopplungstensors implementiert, um Nullpunkt-Effekte betrachten zu können. 3.) Ein weiterer Aspekt der Arbeit behandelt die Strukturaufklärung an diskotischen Flüssigkristallen. Die quantenchemische Modellbildung und das Zusammenspiel mit experimentellen Methoden, vor allem der Festkörper-NMR, wird vorgestellt. 4.) Innerhalb dieser Arbeit wurde mit der Parallelisierung des Quantenchemiepaketes ACESII begonnen. Die grundlegende Strategie und erste Ergebnisse werden vorgestellt. 5.) Zur Skalenreduktion des CCCSD(T)-Verfahrens durch Faktorisierung wurden verschiedene Zerlegungen des Energienenners getestet. Ein sich hieraus ergebendes Verfahren zur Berechnung der CCSD(T)-Energie wurde implementiert. 6.) Die Reaktionsaufklärung der Bildung von HSOH aus di-tert-Butyl-Sulfoxid wird vorgestellt. Dazu wurde die Thermodynamik der Reaktionsschritte mit Methoden der Quantenchemie berechnet.
Resumo:
Bone remodeling is controlled by the osteoclast, which resorbs bone, and the osteoblast, which synthesizes and secretes proteins that are eventually mineralized into bone. Ca$\sp{2+}$ homeostasis and signaling contribute to the function of nearly all cell types, and understanding both in the osteoblast is of importance given its secretory properties and interaction with osteoclasts. This study was undertaken to identify and investigate the physiology of the Ca$\sp{2+}$ signaling mechanisms present in osteoblasts. The Ca$\sp{2+}$ pumps, stores and channels present in osteoblasts were studied. RT-PCR cloning revealed that osteoblast-like cells express PMCA1b, an alternatively spliced transcript of the plasma membrane Ca$\sp{2+}$-ATPase. The PMCA1b isoform contains a consensus phosphorylation site for cAMP-dependent protein kinase A and a modified calmodulin binding domain. The regulation of osteoblast function by agents that act via cAMP-mediated pathways may involve alterations in the activity of the plasma membrane Ca$\sp{2+}$-ATPase.^ Calcium release from intracellular stores is a signaling mechanism used universally by cells responding to hormones and growth factors, and the compartmentalization and regulated release of calcium is cell-type specific. Fura-2 was employed to monitor intracellular Ca$\sp{2+}$. Thapsigargin and 2,5,-di-(tert-butyl)-1,4-benzohydroquinone (tBuHQ), two inhibitors of endoplasmic reticulum Ca$\sp{2+}$-ATPase activity, both emptied a single intracellular calcium pool which was released in response to either ATP or thrombin, identifying it as the inositol 1,4,5-trisphosphate-sensitive calcium store. The Ca$\sp{2+}$ storage system present in osteoblasts is typical of a non-excitable cell type, despite these cells sharing characteristics of excitable cells such as voltage-sensitive Ca$\sp{2+}$ channels (VSCCs).^ VSCCs are important cell surface regulators of membrane permeability to Ca$\sp{2+}$. In non-excitable cells VSCCs act as cellular transducers of stimulus-secretion coupling, activators of intracellular proteins, and in control of cell growth and differentiation. Functional VSCCs have been shown to exist in osteoblasts, however, no molecular cloning has been reported. To obtain information concerning the molecular identity of the osteoblastic VSCC, we used an RT-PCR regional amplification approach. Sequencing of the products indicated that osteoblasts express at least two isoforms of the L-type VSCC, $\alpha 1\sb{\rm C-a}$ and the $\alpha 1\sb{\rm C-d}$, which share regions of identity to the $\alpha \sb{\rm 1C}$ isoform first identified in cardiac myocytes. The ability of $1,25(\rm OH)\sb2D\sb3$ and structural analogs to modulate expression of Ca$\sp{2+}$ channel mRNA was then investigated. Cells were cultured for 48 hr in the presence of $1,25(\rm OH)\sb2D\sb3$ or vitamin D analogs, and the levels of mRNA encoding VSCC $\alpha \sb{\rm 1C}$ were quantitated using a competitive RT-PCR assay. It was found that $1,25(\rm OH)\sb2D\sb3$ and analog BT reduced steady state levels of $\alpha \sb{\rm 1C}$ mRNA. Conversely, analog AT did not alter steady state levels of Ca$\sp{2+}$ channel mRNA. Since it has been shown previously that analog BT, but not AT, binds and activates the nuclear vitamin D receptor, these findings suggest that the down regulation of channel mRNA involves the nuclear receptor for $1,25(\rm OH)\sb2D\sb3$. ^
Resumo:
Measured rates of intrinsic clearance determined using cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions for fish. To date, however, the intra- and interlaboratory reliability of this procedure has not been determined. In the present study, three laboratories determined in vitro intrinsic clearance of six reference compounds (benzo[a]pyrene, 4-nonylphenol, di-tert-butyl phenol, fenthion, methoxychlor and o-terphenyl) by conducting substrate depletion experiments with cryopreserved trout hepatocytes from a single source. O-terphenyl was excluded from the final analysis due to nonfirst-order depletion kinetics and significant loss from denatured controls. For the other five compounds, intralaboratory variability (% CV) in measured in vitro intrinsic clearance values ranged from 4.1 to 30%, while interlaboratory variability ranged from 27 to 61%. Predicted bioconcentration factors based on in vitro clearance values exhibited a reduced level of interlaboratory variability (5.3-38% CV). The results of this study demonstrate that cryopreserved trout hepatocytes can be used to reliably obtain in vitro intrinsic clearance of xenobiotics, which provides support for the application of this in vitro method in a weight-of-evidence approach to chemical bioaccumulation assessment.
Resumo:
Environmentally friendly sulfonated black carbon (BC) catalysts were prepared from biodiesel waste, glycerol. These black carbons (BCs) contain a high amount of acidic groups, mainly sulfonated and oxygenated groups. Furthermore, these catalysts show a high catalytic activity in the glycerol etherification reaction with tert-butyl alcohol, the activity being larger for the sample prepared with a higher glycerol:sulfuric acid ratio (1:3). The yield for mono-tert-butyl glycerol (MTBG), di-tert-butyl glycerol (DTBG) and tri-tert-butyl-glycerol (TTBG) were very similar to those obtained using a commercial resin, Amberlyst-15. Furthermore, experimental results show that the carbon with the lowest acidic surface group content, BC prepared in minor glycerol:sulfuric acid ratio (10:1), can be chemically treated after carbonization to achieve an improved catalytic activity. The activity of all BCs is high and very similar, about 50% and 20% for the MTBG and DTBG + TTBG, respectively.
Resumo:
Various monoacrylic compounds containing a hindered phenol function (e.g.3,5-di-tert.-butyl-4-hydroxy benzyl alcohol, DBBA and vinyl-3-[3',5'-di-tert.-butyl-4-hydroxy phenyl] propionate, VDBP), and a benzophenone function (2-hydroxy-4-[beta hydroxy ethoxy] benzophenone, HAEB) were synthesised and used as reactive antioxidants (AO's) for polypropylene (PP). These compounds were reacted with PP melt in the presence of low concentration of a free radical generator such a peroxide (reactive processing) to produce bound-antioxidant concentrates. The binding reaction of these AO's onto PP was found to be low and this was shown to be mainly due to competing reactions such as homopolymerisation of the antioxidant. At high concentrations of peroxide, higher binding efficiency resulted, but, this was accompanied by melt degradation of the polymer. In a special reactive processing procedure, a di- or a trifunctional reactant (referred to as coagent), e.g.tri-methylol propane tri-acrylate, Tris, and Divinyl benzene, DVB, were used with the antioxidant and this has led to an enhanced efficiency of the grating reaction of antioxidants on the polymer in the melt. The evidence suggests that this is due to copolymerisation of the antioxidants with the coagent as well as grafting of the copolymers onto the polymer backbone. Although the 'bound' AO's containing a UV stabilising function showed lower overall stabilisation effect than the unbound analogues before extraction, they were still much more effective when subjected to exhaustive solvent extraction. Furthermore, a very effective synergistic stabilising activity when two reactive AO's containing thermal and UV stabilising functions e.g. DBBA and HAEB, were reactively processed with PP in the presence of a coagent. The stabilising effectiveness of such a synergist was much higher than that of the unbound analogues both before and after extraction. Analysis using the GPC technique of concentrates containing bound-DBBA processed in the presence of Tris coagent showed higher molecular weight (Mn), compared to that of a polymer processed without the coagent, but was still lower than that of the control processed PP with no additives. This indicates that Tris coagent may inhibit further melt degradation of the polymer. Model reactions of DBBA in liquid hydrocarbon (decalin) and analysis of the products using FTIR and NMR spectroscopy showed the formation of grafted DBBA onto decalin molecules as well as homopolymerisation of the AO. In the presence of Tris coagent, copolymerisation of DBBA with the Tris inevitably occured; which was followed by grafting of the copolymer onto the decalin, FTIR and NMR results of the polymer concentrates containing bound-DBBA processed with and without Tris, showed similar behaviour as the above model reactions. This evidence supports the effect of Tris in enhancing the efficiency of the reaction of DBBA in the polymer melt. Reactive procesing of HAEB in polymer melts exhibited crosslinking formation In the early stages of the reaction, however, in the final stage, the crosslinked structure was 'broken down' or rearranged to give an almost gel free polymer with high antioxidant binding efficiency.
Resumo:
The production and uses of coal tar are reviewed as are the uses of steroids and cytotoxic agents in the treatment of psoriasis with a review of the condition also. An attempt was made to improve the efficaciousness and cosmetic acceptability of a low temperature tar, by screening fractions of this tar, derived from a variety of separation procedures. The most efficacious fraction was the highest boiling acid fraction, which is believed to consist mainly of mono- and di-hydric phenols. A time and concentration study showed that the optimum regime was the application of a 10% concentration in 5% wool fat in soft, yellow paraffin daily for 21 days. The mouse tail skin was selected as an experimental model, to ascertain the efficaciousness of fractions, because of the similarities between this skin and the psoriatic lesion. The activity of a fraction was monitored by the inducement of a granular layer in the mouse tail epidermis. Because coal tar is not an easy medium to work with, and the active fractions showed no increase in cosmetic acceptability over the parent coal tar, likely coal tar constituents were selected for screening on the basis of phenolic character, and the molecular weight range elucidated by mass spectroscopy. 32 potential anti-psoriatic agents were screened on mouse tail. Two catechols, 3,5-di-t-butyl and 4-t-butyl catechols were active. Other structures showed little or no activity. 24 catechols were screened and two extremely active catechols were discovered, 3-methyl-5-t-octyl and 5-methyl-3-t-octyl catechols. The screening of catechol-rich coal tar fractions and a coal tar fraction which had had the catechols removed by oxidation, showed that some anti-psoriatic activity was contained in the catechol fraction of coal tar. Attempts to elucidate the mode of action of these two compounds met with little success, but two modes of action are suggested.
Resumo:
The activity of a silica-supported BF3–methanol solid acid catalyst in the cationic polymerisation of an industrial aromatic C9 feedstock has been investigated. Reuse has been achieved under continuous conditions. Titration of the catalyst acid sites with triethylphosphine oxide (TEPO) in conjunction with 31P MAS NMR shows the catalyst to have two types of acid sites. Further analysis with 2,6 di-tert-butyl-4-methylpyridine (DBMP) has revealed the majority of these acid sites to be Brønsted in nature. The role of α-methylstyrene in promoting resin polymerisation via chain transfer is proposed.
Resumo:
Two antioxidant modified layered double hydroxides (AO-LDHs) were successfully prepared by theintercalation of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (IrganoxCOOH) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) in the layered structure of LDH. It was foundthat by anchoring the phenolic moieties to the LDH layers the antioxidant power is retained in the caseof Trolox, and even amplified in the case of IrganoxCOOH. A small amount of the two AO-LDHs wasincorporated into poly(lactic acid), PLA, by solution mixing and melt extrusion. The thermo-oxidativestability of the composites was compared with that of the neat PLA and PLA containing free AOs. SECanalysis indicates that, after a controlled period of ageing, both the AO-LDHs protect the PLA fromchain scission. The oxidation induction time (OIT, DSC) at 230 °C shows also the beneficial effects ofthe presence of the functional filler in the polymer matrix. Further, results from a preliminary migrationtest suggest that the AO species have a low tendency to migrate away from the AO-LDHs embedded inthe polymer matrix thus keeping the AO protected inside the nanofiller layers thereby remaining activefor a longer time.