953 resultados para D-Glucose
Resumo:
Monosaccharides provide an excellent platform to tailor molecular diversity by appending desired substituents at selected positions around the sugar scaffold. The presence of five functionalized and stereo-controlled centres on the sugar scaffolds gives the chemist plenty of scope to custom design molecules to a pharmacophore model. This review focuses on the peptidomimetic developments in this area, as well as the concept of tailoring structural and functional diversity in a library using carbohydrate scaffolds and how this can lead to increased hit rates and rapid identification of leads, which has promising prospects for drug development.
Resumo:
Introduction: Two hundred ten patients with newly diagnosed Hodgkin`s lymphoma (HL) were consecutively enrolled in this prospective trial to evaluate the cost-effectiveness of fluorine-18 ((18)F)-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) scan in initial staging of patients with HL. Methods: All 210 patients were staged with conventional clinical staging (CCS) methods, including computed tomography (CT), bone marrow biopsy (BMB), and laboratory tests. Patients were also submitted to metabolic staging (MS) with whole-body FDG-PET scan before the beginning of treatment. A standard of reference for staging was determined with all staging procedures, histologic examination, and follow-up examinations. The accuracy of the CCS was compared with the MS. Local unit costs of procedures and tests were evaluated. Incremental cost-effectiveness ratio (ICER) was calculated for both strategies. Results: In the 210 patients with HL, the sensitivity for initial staging of FDG-PET was higher than that of CT and BMB in initial staging (97.9% vs. 87.3%; P < .001 and 94.2% vs. 71.4%, P < 0.003, respectively). The incorporation of FDG-PET in the staging procedure upstaged disease in 50 (24%) patients and downstaged disease in 17 (8%) patients. Changes in treatment would be seen in 32 (15%) patients. Cumulative cost for staging procedures was $3751/patient for CCS compared to $5081 for CCS + PET and $4588 for PET/CT. The ICER of PET/CT strategy was $16,215 per patient with modified treatment. PET/CT costs at the beginning and end of treatment would increase total costs of HL staging and first-line treatment by only 2%. Conclusion: FDG-PET is more accurate than CT and BMB in HL staging. Given observed probabilities, FDG-PET is highly cost-effective in the public health care program in Brazil.
Resumo:
Head-to-tail cyclic peptides have been reported to bind to multiple, unrelated classes of receptor with high affinity. They may therefore be considered to be privileged structures. This review outlines the strategies by which both macrocyclic cyclic peptides and cyclic dipeptides or diketopiperazines have been synthesised in combinatorial libraries. It also briefly outlines some of the biological applications of these molecules, thereby justifying their inclusion as privileged structures.
Resumo:
Introdução – O cancro de pulmão/traqueia e brônquios é a principal causa de morte por neoplasia na União Europeia. A técnica de duas aquisições de imagem em tempos diferentes no Positron Emission Tomography/Computed Tomography (PET/CT) tem sido referenciada em alguns artigos como uma mais-valia no diagnóstico do cancro do pulmão. O objectivo deste estudo consiste em avaliar a eficiência diagnóstica do PET/CT com a aquisição das duas imagens em tempos diferentes na caracterização do nódulo solitário pulmonar (NSP), tendo em conta a histologia e o tamanho do nódulo. Metodologia – Foram analisados 115 NSP, num total de 110 pacientes, dos quais 65 nódulos eram malignos. Adquiriram-se duas imagens, a primeira a um tempo médio de 52 minutos e a segunda a um tempo médio de 125 minutos após administração do 18F-2-fluoro-2-deoxi-D-glucose (18F-FDG). Para a análise das imagens obteve-se o standard uptake value máximo (SUVmax) e a percentagem de variação dos SUVmax (%variação). Resultados – A %variação apresenta valores de eficiência diagnóstica superiores à análise dos SUVmax em separado. Existem também diferenças significativas na histologia e no SUVmax, registando-se um aumento do SUVmax2 comparativamente ao SUVmax1 nas patologias malignas. Conclusão – A técnica da aquisição de duas imagens em tempos diferentes mostrou ser mais eficaz na caracterização do NSP do que a análise de apenas uma imagem.
Resumo:
Introdução – A ausência de um ciclotrão para produção da 2-[18F]Flúor-2-deoxi-D-glucose (18F-FDG) é, actualmente, uma realidade para a maior parte dos centros onde se realizam exames de Tomografia por Emissão de Positrões (TEP), sendo importante garantir a qualidade deste radiofármaco desde o momento da sua síntese até à administração ao doente. O objectivo do estudo é demonstrar a influência dos parâmetros temperatura, pH, concentração radioactiva (CR) e tempo na pureza radioquímica da 18F-FDG. Metodologia – Analisou-se o pH e a pureza radioquímica [por cromatografia em camada fina (CCF)] de seis amostras de 18F-FDG com diferentes CR e em diferentes tempos e temperaturas. Resultados – Registou-se um aumento da percentagem de 18F- aquando do aumento do tempo. Contudo, os resultados não comprovam que a diluição das amostras diminui a degradação do 18F-FDG. No entanto, comparando apenas as amostras diluídas (185 e 740 MBq/ml), observa-se uma relação positiva entre a CR e a percentagem de 18F-. Verificou-se ainda um aumento da percentagem de 18F- nas temperaturas mais elevadas. Conclusão – Sugere-se a diluição das amostras de 18F-FDG e que o tempo de armazenamento não seja muito longo. As amostras devem ainda encontrar-se a temperatura e pH estáveis.
Resumo:
Mestrado em Medicina Nuclear - Ramo de especialização: Tomografia por Emissão de Positrões
Resumo:
An in vitro assay system that included automated radiometric quantification of 14CO2 released as a result of oxidation of 14C- substrates was applied for studying the metabolic activity of M. tuberculosis under various experimental conditions. These experiments included the study of a) mtabolic pathways, b) detection times for various inoculum sizes, c) effect of filtration on reproducibility of results, d) influence of stress environment e) minimal inhibitory concentrations for isoniazid, streptomycin, ethambutol and rifampin, and f) generation times of M. tuberculosis and M. bovis. These organisms were found to metabolize 14C-for-mate, (U-14C) acetate, (U-14C) glycerol, (1-14C) palmitic acid, 1-14C) lauric acid, (U-14C) L-malic acid, (U-14C) D-glucose, and (U-14C) D-glucose, but not (1-14C) L-glucose, (U-14C) glycine, or (U-14C) pyruvate to 14CO2. By using either 14C-for-mate, (1-14C) palmitic acid, or (1-14C) lauric acid, 10(7) organisms/vial could be detected within 24 48 hours and as few as 10 organisms/vial within 16-20 days. Reproducible results could be obtained without filtering the bacterial suspension, provided that the organisms were grown in liquid 7H9 medium with 0.05% polysorbate 80 and homogenized prior to the study. Drugs that block protein synthesis were found to have lower minimal inhibitory concentrations with the radiometric method when compared to the conventional agar dilution method. The mean generation time obtained for M. bovis and different strains of M. tuberculosis with various substrates was 9 ± 1 hours.
Resumo:
Mestrado em Medicina Nuclear - Área de especialização: Tomografia por emissão de positrões
Resumo:
Dissertação para obtenção do Grau de Mestre em Mestrado em Bioorgânica
Resumo:
Experiments for the investigation of dehydrogenase activity of washed cells of a strains of Br. abortus and another of Br. suis in presence of different single added substrates are reported. The activity was measured as the amount of formazan produced by the reduction of 2, 3, 5-triphenyltetrazolum chloride acting as a hydrogen ions acceptor, at pH 7.0. In a general manner the dehydrogenase activity of Br. suis was much more intense than that of Br. abortus (fig. 5). In the conditions of the experiments Br. abortus oxidized L-arabinose, D-galactose, D-glucose, glycerol, D-xylose, DL-alanine, D-fructose, and D-sorbitol. Brucella suis oxidized D-xylose, L-arabinose, D-glucose, D-galactose, DL-alanine, sodium acetate, maltose, glycine, D-fructose, and D-sorbitol. Glycerol was oxidized by Br. abortus but its oxidation by Br. suir was very slight. Sodium acetate and maltose were intensely oxidized by Br. suir but not by Br. abortus. The sites of more intense enzymatic acitivity were seen as small red colored round granules located in one pole of the cells.
Resumo:
Quantitative determinations of agglutination of hemocytes from oysters, Crassostrea virginica, by the Lathyrus odoratus lectin at five concentrations revealed that clumping of hemocytes from oysters infected with Perkinsus marinus is partially inhibited. Although the nature of the hemocyte surface saccharide, which is not D(+)-glucose, D(+)mannose, or alpha-methyl-D-mannoside, remains to be determined, it may be concluded that this molecule also occurs on the surface of P. marinus. It has been demonstrated that the panning technique (Ford et al. 1990) is qualitatively as effective for determining the presence of P. marinus in C. virginica as the hemolymph assay method (Gauthier & Fisher 1990).
Resumo:
Aggregating brain cell cultures at an advanced maturational stage (20-21 days in vitro) were subjected for 1-3 h to anaerobic (hypoxic) and/or stationary (ischemic) conditions. After restoration of the normal culture conditions, cell loss was estimated by measuring the release of lactate dehydrogenase as well as the irreversible decrease of cell type-specific enzyme activities, total protein and DNA content. Ischemia for 2 h induced significant neuronal cell death. Hypoxia combined with ischemia affected both neuronal and glial cells to different degrees (GABAergic neurons>cholinergic neurons>astrocytes). Hypoxic and ischemic conditions greatly stimulated the uptake of 2-deoxy-D-glucose, indicating increased glucose consumption. Furthermore, glucose restriction (5.5 mM instead of 25 mM) dramatically increased the susceptibility of neuronal and glial cells to hypoxic and ischemic conditions. Glucose media concentrations below 2 mM caused selective neuronal cell death in otherwise normal culture conditions. GABAergic neurons showed a particularly high sensitivity to glucose restriction, hypoxia, and ischemia. The pattern of ischemia-induced changes in vitro showed many similarities to in vivo findings, suggesting that aggregating brain cell cultures provide a useful in vitro model to study pathogenic mechanisms related to brain ischemia.
Resumo:
PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.
Resumo:
PURPOSE: 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[(18)F]fluoro-D: -glucose ([(18)F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2'-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [(18)F]FLT in tumor xenografts. METHODS: The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[(125)I]iodo-2'-deoxyuridine biodistribution measurements. In [(18)F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [(18)F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [(18)F]FDG tumor uptake. Using microPET, the dynamic distribution of [(18)F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation. RESULTS: FdUrd induced an immediate increase in tumor uptake of 5-[(125)I]iodo-2'-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [(18)F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [(18)F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [(18)F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [(18)F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis. CONCLUSION: We showed a reliable and significant uptake increase of [(18)F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [(18)F]FLT PET.
Resumo:
Myocardium undergoing remodeling in vivo exhibits insulin resistance that has been attributed to a shift from the insulin-sensitive glucose transporter GLUT4 to the fetal, less insulin-sensitive, isoform GLUT1. To elucidate the role of altered GLUT4 expression in myocardial insulin resistance, glucose uptake and the expression of the glucose transporter isoforms GLUT4 and GLUT1 were measured in adult rat cardiomyocytes (ARC). ARC in culture spontaneously undergo dedifferentiation, hypertrophy-like spreading, and return to a fetal-like gene expression pattern. Insulin stimulation of 2-deoxy-D-glucose uptake was completely abolished on day 2 and 3 of culture and recovered thereafter. Although GLUT4 protein level was reduced, the time-course of unresponsiveness to insulin did not correlate with altered expression of GLUT1 and GLUT4. However, translocation of GLUT4 to the sarcolemma in response to insulin was completely abolished during transient insulin resistance. Insulin-mediated phosphorylation of Akt was not reduced, indicating that activation of phosphatidylinositol 3-kinase (PI3K) was preserved. On the other hand, total and phosphorylated Cbl was reduced during insulin resistance, suggesting that activation of Cbl/CAP is essential for insulin-mediated GLUT4 translocation, in addition to activation of PI3K. Pharmacological inhibition of contraction in insulin-sensitive ARC reduced insulin sensitivity and lowered phosphorylated Cbl. The results suggest that transient insulin resistance in ARC is related to impairment of GLUT4 translocation. A defect in the PI3K-independent insulin signaling pathway involving Cbl seems to contribute to reduced insulin responsiveness and may be related to contractile arrest.