897 resultados para Cyber-Physical Systems
Resumo:
Abstract—With the proliferation of Software systems and the rise of paradigms such the Internet of Things, Cyber- Physical Systems and Smart Cities to name a few, the energy consumed by software applications is emerging as a major concern. Hence, it has become vital that software engineers have a better understanding of the energy consumed by the code they write. At software level, work so far has focused on measuring the energy consumption at function and application level. In this paper, we propose a novel approach to measure energy consumption at a feature level, cross-cutting multiple functions, classes and systems. We argue the importance of such measurement and the new insight it provides to non-traditional stakeholders such as service providers. We then demonstrate, using an experiment, how the measurement can be done with a combination of tools, namely our program slicing tool (PORBS) and energy measurement tool (Jolinar).
Resumo:
Manufacturing companies have passed from selling uniquely tangible products to adopting a service-oriented approach to generate steady and continuous revenue streams. Nowadays, equipment and machine manufacturers possess technologies to track and analyze product-related data for obtaining relevant information from customers’ use towards the product after it is sold. The Internet of Things on Industrial environments will allow manufacturers to leverage lifecycle product traceability for innovating towards an information-driven services approach, commonly referred as “Smart Services”, for achieving improvements in support, maintenance and usage processes. The aim of this study is to conduct a literature review and empirical analysis to present a framework that describes a customer-oriented approach for developing information-driven services leveraged by the Internet of Things in manufacturing companies. The empirical study employed tools for the assessment of customer needs for analyzing the case company in terms of information requirements and digital needs. The literature review supported the empirical analysis with a deep research on product lifecycle traceability and digitalization of product-related services within manufacturing value chains. As well as the role of simulation-based technologies on supporting the “Smart Service” development process. The results obtained from the case company analysis show that the customers mainly demand information that allow them to monitor machine conditions, machine behavior on different geographical conditions, machine-implement interactions, and resource and energy consumption. Put simply, information outputs that allow them to increase machine productivity for maximizing yields, save time and optimize resources in the most sustainable way. Based on customer needs assessment, this study presents a framework to describe the initial phases of a “Smart Service” development process, considering the requirements of Smart Engineering methodologies.
Resumo:
Part 7: Cyber-Physical Systems
Resumo:
Part 6: Engineering and Implementation of Collaborative Networks
Resumo:
The use of Cyber Physical Systems (CPS) to optimise industrial energy systems is an approach which has the potential to positively impact on manufacturing sector energy efficiency. The need to obtain data to facilitate the implementation of a CPS in an industrial energy system is however a complex task which is often implemented in a non-standardised way. The use of the 5C CPS architecture has the potential to standardise this approach. This paper describes a case study where data from a Combined Heat and Power (CHP) system located in a large manufacturing company was fused with grid electricity and gas models as well as a maintenance cost model using the 5C architecture with a view to making effective decisions on its cost efficient operation. A control change implemented based on the cognitive analysis enabled via the 5C architecture implementation has resulted in energy cost savings of over €7400 over a four-month period, with energy cost savings of over €150,000 projected once the 5C architecture is extended into the production environment.
Resumo:
As mechatronic devices and components become increasingly integrated with and within wider systems concepts such as Cyber-Physical Systems and the Internet of Things, designer engineers are faced with new sets of challenges in areas such as privacy. The paper looks at the current, and potential future, of privacy legislation, regulations and standards and considers how these are likely to impact on the way in which mechatronics is perceived and viewed. The emphasis is not therefore on technical issues, though these are brought into consideration where relevant, but on the soft, or human centred, issues associated with achieving user privacy.
Resumo:
Las teorías administrativas se han basado, casi sin excepción, en los fundamentos y los modelos de la ciencia clásica (particularmente, en los modelos de la física newtoniana). Sin embargo, las organizaciones actualmente se enfrentan a un mundo globalizado, plagado de información (y no necesariamente conocimiento), hiperconectado, dinámico y cargado de incertidumbre, por lo que muchas de las teorías pueden mostrar limitaciones para las organizaciones. Y quizá no por la estructura, la lógica o el alcance de las mismas, sino por la falta de criterios que justifiquen su aplicación. En muchos casos, las organizaciones siguen utilizando la intuición, las suposiciones y las verdades a medias en la toma de decisiones. Este panorama pone de manifiesto dos hechos: de un lado, la necesidad de buscar un método que permita comprender las situaciones de cada organización para apoyar la toma de decisiones. De otro lado, la necesidad de potenciar la intuición con modelos y técnicas no tradicionales (usualmente provenientes o inspiradas por la ingeniería). Este trabajo busca anticipar los pilares de un posible método que permita apoyar la toma de decisiones por medio de la simulación de modelos computacionales, utilizando las posibles interacciones entre: la administración basada en modelos, la ciencia computacional de la organización y la ingeniería emergente.
Resumo:
This paper presents a methodology to forecast the hourly and daily consumption in households assisted by cyber physical systems. The methodology was validated using a database of consumption of a set of 93 domestic consumers. Forecast tools used were based on Fast Fourier Series and Generalized Reduced Gradient. Both tools were tested and their forecast results were compared. The paper shows that both tools allow obtaining satisfactory results for energy consumption forecasting.
Resumo:
This paper describes a smart grid test bed comprising embedded generation, phasor measurement units (PMUs), and supporting ICT components and infrastructure. The test bed enables the development of a use case focused on a synchronous islanding scenario, where the embedded generation becomes islanded from the mains supply. Due to the provisioned control components, control strategy, and best-practice ICT support infrastructure, the islanded portion of the grid is able to continue to operate in a secure and dependable manner.
Resumo:
The future power grid will effectively utilize renewable energy resources and distributed generation to respond to energy demand while incorporating information technology and communication infrastructure for their optimum operation. This dissertation contributes to the development of real-time techniques, for wide-area monitoring and secure real-time control and operation of hybrid power systems. ^ To handle the increased level of real-time data exchange, this dissertation develops a supervisory control and data acquisition (SCADA) system that is equipped with a state estimation scheme from the real-time data. This system is verified on a specially developed laboratory-based test bed facility, as a hardware and software platform, to emulate the actual scenarios of a real hybrid power system with the highest level of similarities and capabilities to practical utility systems. It includes phasor measurements at hundreds of measurement points on the system. These measurements were obtained from especially developed laboratory based Phasor Measurement Unit (PMU) that is utilized in addition to existing commercially based PMU’s. The developed PMU was used in conjunction with the interconnected system along with the commercial PMU’s. The tested studies included a new technique for detecting the partially islanded micro grids in addition to several real-time techniques for synchronization and parameter identifications of hybrid systems. ^ Moreover, due to numerous integration of renewable energy resources through DC microgrids, this dissertation performs several practical cases for improvement of interoperability of such systems. Moreover, increased number of small and dispersed generating stations and their need to connect fast and properly into the AC grids, urged this work to explore the challenges that arise in synchronization of generators to the grid and through introduction of a Dynamic Brake system to improve the process of connecting distributed generators to the power grid.^ Real time operation and control requires data communication security. A research effort in this dissertation was developed based on Trusted Sensing Base (TSB) process for data communication security. The innovative TSB approach improves the security aspect of the power grid as a cyber-physical system. It is based on available GPS synchronization technology and provides protection against confidentiality attacks in critical power system infrastructures. ^
Resumo:
Part 21: Mobility and Logistics
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy assisted by a cyber-physical system for supporting management decisions to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a stochastic linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modelled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
Presentation about research projects that build understanding of urban design and interactions and plan for future opportunities. What do we need to model?
Resumo:
We present an approach for detecting sensor spoofing attacks on a cyber-physical system. Our approach consists of two steps. In the first step, we construct a safety envelope of the system. Under nominal conditions (that is, when there are no attacks), the system always stays inside its safety envelope. In the second step, we build an attack detector: a monitor that executes synchronously with the system and raises an alarm whenever the system state falls outside the safety envelope. We synthesize safety envelopes using a modified machine learning procedure applied on data collected from the system when it is not under attack. We present experimental results that show effectiveness of our approach, and also validate the several novel features that we introduced in our learning procedure.
Resumo:
The applicability of the white-noise method to the identification of a nonlinear system is investigated. Subsequently, the method is applied to certain vertebrate retinal neuronal systems and nonlinear, dynamic transfer functions are derived which describe quantitatively the information transformations starting with the light-pattern stimulus and culminating in the ganglion response which constitutes the visually-derived input to the brain. The retina of the catfish, Ictalurus punctatus, is used for the experiments.
The Wiener formulation of the white-noise theory is shown to be impractical and difficult to apply to a physical system. A different formulation based on crosscorrelation techniques is shown to be applicable to a wide range of physical systems provided certain considerations are taken into account. These considerations include the time-invariancy of the system, an optimum choice of the white-noise input bandwidth, nonlinearities that allow a representation in terms of a small number of characterizing kernels, the memory of the system and the temporal length of the characterizing experiment. Error analysis of the kernel estimates is made taking into account various sources of error such as noise at the input and output, bandwidth of white-noise input and the truncation of the gaussian by the apparatus.
Nonlinear transfer functions are obtained, as sets of kernels, for several neuronal systems: Light → Receptors, Light → Horizontal, Horizontal → Ganglion, Light → Ganglion and Light → ERG. The derived models can predict, with reasonable accuracy, the system response to any input. Comparison of model and physical system performance showed close agreement for a great number of tests, the most stringent of which is comparison of their responses to a white-noise input. Other tests include step and sine responses and power spectra.
Many functional traits are revealed by these models. Some are: (a) the receptor and horizontal cell systems are nearly linear (small signal) with certain "small" nonlinearities, and become faster (latency-wise and frequency-response-wise) at higher intensity levels, (b) all ganglion systems are nonlinear (half-wave rectification), (c) the receptive field center to ganglion system is slower (latency-wise and frequency-response-wise) than the periphery to ganglion system, (d) the lateral (eccentric) ganglion systems are just as fast (latency and frequency response) as the concentric ones, (e) (bipolar response) = (input from receptors) - (input from horizontal cell), (f) receptive field center and periphery exert an antagonistic influence on the ganglion response, (g) implications about the origin of ERG, and many others.
An analytical solution is obtained for the spatial distribution of potential in the S-space, which fits very well experimental data. Different synaptic mechanisms of excitation for the external and internal horizontal cells are implied.