961 resultados para Cross-species transferability
Resumo:
[EN] We describe 12 new polymorphic dinucleotide microsatellite loci and multiplex Polymerase Chain Reaction conditions from the loggerhead sea turtle Caretta caretta. Levels of polymorphism were assessed in 50 individuals from the nesting population of the Cape Verde Islands.
Resumo:
The aim of this study was to identify single-nucleotide polymorphisms (SNPs) in buffaloes associated with milk yield and content, in addition to somatic cell scores based on the cross-species transferability of SNPs from cattle to buffalo. A total of 15,745 SNPs were analyzed, of which 1562 showed 1% significance and 4742 with 5% significance, which were associated for all traits studied. After application of Bonferroni's correction for multiple tests of the traits analyzed, we found 2 significant SNPs placed on cattle chromosomes BTA15 and BTA20, which are homologous to buffalo chromosomes BBU16 and BBU19, respectively. In this genome association study, we found several significant SNPs affecting buffalo milk production and quality. Furthermore, the use of the high-density bovine BeadChip was suitable for genomic analysis in buffaloes. Although extensive chromosome arm homology was described between cattle and buffalo, the exact chromosomal position of SNP markers associated with these economically important traits in buffalo can be determined only through buffalo genome sequencing.
Resumo:
Background Simple Sequence Repeats (SSRs) are widely used in population genetic studies but their classical development is costly and time-consuming. The ever-increasing available DNA datasets generated by high-throughput techniques offer an inexpensive alternative for SSRs discovery. Expressed Sequence Tags (ESTs) have been widely used as SSR source for plants of economic relevance but their application to non-model species is still modest. Methods Here, we explored the use of publicly available ESTs (GenBank at the National Center for Biotechnology Information-NCBI) for SSRs development in non-model plants, focusing on genera listed by the International Union for the Conservation of Nature (IUCN). We also search two model genera with fully annotated genomes for EST-SSRs, Arabidopsis and Oryza, and used them as controls for genome distribution analyses. Overall, we downloaded 16 031 555 sequences for 258 plant genera which were mined for SSRsand their primers with the help of QDD1. Genome distribution analyses in Oryza and Arabidopsis were done by blasting the sequences with SSR against the Oryza sativa and Arabidopsis thaliana reference genomes implemented in the Basal Local Alignment Tool (BLAST) of the NCBI website. Finally, we performed an empirical test to determine the performance of our EST-SSRs in a few individuals from four species of two eudicot genera, Trifolium and Centaurea. Results We explored a total of 14 498 726 EST sequences from the dbEST database (NCBI) in 257 plant genera from the IUCN Red List. We identify a very large number (17 102) of ready-to-test EST-SSRs in most plant genera (193) at no cost. Overall, dinucleotide and trinucleotide repeats were the prevalent types but the abundance of the various types of repeat differed between taxonomic groups. Control genomes revealed that trinucleotide repeats were mostly located in coding regions while dinucleotide repeats were largely associated with untranslated regions. Our results from the empirical test revealed considerable amplification success and transferability between congenerics. Conclusions The present work represents the first large-scale study developing SSRs by utilizing publicly accessible EST databases in threatened plants. Here we provide a very large number of ready-to-test EST-SSR (17 102) for 193 genera. The cross-species transferability suggests that the number of possible target species would be large. Since trinucleotide repeats are abundant and mainly linked to exons they might be useful in evolutionary and conservation studies. Altogether, our study highly supports the use of EST databases as an extremely affordable and fast alternative for SSR developing in threatened plants.
Resumo:
Macroalgal blooms are a growing environmental problem in eutrophicated coastal ecosystems. Members of the green algal genus Ulva are significant contributors to blooms, which are typically dominated by only one of several co-occurring opportunistic species. Our understanding of bloom dynamics, such as the importance of clonality, is limited because previously used genetic markers such as internal transcribed spacer sequences have shown very little resolution. Microsatellites are the marker of choice for such studies, but to date, only five primer pairs have been developed for a single member of this genus, Ulva intestinalis. We have now developed four new microsatellite markers for U. intestinalis using genome screening and restriction-ligation and tested them on individuals from six populations in the Gulf of Finland, Finland. All new markers exhibited polymorphism in U. intestinalis, with the numbers of alleles ranging from 6 to 10. On the basis of assignment tests, F-ST estimates and analysis of molecular variance, there was genetic differentiation among populations. Where significantly different, expected heterozygosity (HE) was higher than observed heterozygosity (Ho), indicating a trend toward heterozygote deficiency. This may indicate that although Ulva spores can disperse relatively efficiently, asexual reproduction can result in genetic differentiation among populations. We also tested the cross-species amplification of our primers and the five primer pairs reported previously on seven species of Ulva, Ulvaria obscura and Unbraulva olivascens (all members of the Ulvaceae). In each species, from five to nine of the loci produced an amplification product, and one to four alleles were discovered at each locus. These markers therefore have great potential for testing hypotheses about the formation and maintenance of multispecies macroalgal blooms.
Resumo:
Ten polymorphic nuclear microsatellite loci were developed from a microsatellite enriched genomic library of the blue shark, Prionace glauca. The utility of these markers for genetic studies of this globally distributed, heavily exploited, oceanic predator was assessed by screening 120 specimens sampled from six locations throughout the species’ range. Both moderately and highly polymorphic marker loci were identified. Three to 35 alleles were found to be segregating per locus (mean 10.1) with observed heterozygosities ranging from 24 to 91%. Evaluation of the cross-species amplification of these markers across 18 additional shark species indicates that these microsatellites are potentially useful for genetic studies of other species of conservation concern.
Resumo:
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Resumo:
A (GT)(n) enriched partial genomic library of bighead carp (Aristichthys nobilis) was constructed by employing the (fast isolation by AFLP of sequences containing repeats) FIASCO protocol. Sixteen loci exhibited polymorphism with two to seven alleles/locus (mean 3.263) in a test population and the observed heterozygosity ranging from 0.100 to 0.690 (mean 0.392). Eleven of the 16 bighead carp microsatellites were found to be also polymorphic in silver carp. These polymorphic loci should provide sufficient level of genetic diversity to evaluate population structure of bighead carp.
Resumo:
m Background: Cross-species nuclear transfer has been shown to be a potent approach to retain the genetic viability of a certain species near extinction. However, most embryos produced by cross-species nuclear transfer were compromised because that they were unable to develop to later stages. Gene expression analysis of cross-species cloned embryos will yield new insights into the regulatory mechanisms involved in cross-species nuclear transfer and embryonic development. Results: A novel gene, K31, was identified as an up-regulated gene in fish cross-subfamily cloned embryos using SSH approach and RACE method. K31 complete cDNA sequence is 1106 base pairs (bp) in length, with a 342 bp open reading frame (ORF) encoding a putative protein of 113 amino acids (aa). Comparative analysis revealed no homologous known gene in zebrafish and other species database. K31 protein contains a putative transmembrane helix and five putative phosphorylation sites but without a signal peptide. Expression pattern analysis by real time RT-PCR and whole-mount in situ hybridization (WISH) shows that it has the characteristics of constitutively expressed gene. Sub-cellular localization assay shows that K31 protein can not penetrate the nuclei. Interestingly, over-expression of K31 gene can cause lethality in the epithelioma papulosum cyprinid (EPC) cells in cell culture, which gave hint to the inefficient reprogramming events occurred in cloned embryos. Conclusion: Taken together, our findings indicated that K31 gene is a novel gene differentially expressed in fish cross-subfamily cloned embryos and over-expression of K31 gene can cause lethality of cultured fish cells. To our knowledge, this is the first report on the determination of novel genes involved in nucleo-cytoplasmic interaction of fish cross-subfamily cloned embryos.
Resumo:
Cross-species nuclear transfer (NT) has been used to retain the genetic viability of a species near extinction. However, unlike intra-species NT, most embryos produced by cross-species NT were unable to develop to later stages due to incompatible nucleocytoplasmic interactions between the donor nuclei and the recipient cytoplasm from different species. To study the early nucleocytoplasmic interaction in cross-species NT, two laboratory fish species (zebrafish and rare minnow) from different subfamilies were used to generate cross-subfamily NT embryos in the present study. Suppression subtractive hybridization (SSH) was performed to screen out differentially expressed genes from the forward and reverse subtractive cDNA libraries. After dot blot and real-time PCR analysis, 80 of 500 randomly selective sequences were proven to be differentially expressed in the cloned embryos. Among them, 45 sequences shared high homology with 28 zebrafish known genes, and 35 sequences were corresponding to 22 novel expressed sequence tags (ESTs). Based on functional clustering and literature mining analysis, up-and down-regulated genes in the cross-subfamily cloned embryos were mostly relevant to transcription and translation initiation, cell cycle regulation, protein binding, etc. To our knowledge, this is the first report on the determination of genes involved in the early development of cross-species NT embryos of fish. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Rare minnow (Gobiocypris rarus) is an endangered small fish endemic to upper reach of the Yangtze River. From a (GT)n enriched genomic library, 32 microsatellites were isolated and characterized. Nineteen of these loci were polymorphic in a test population with alleles ranging from 2-7, and observed and expected heterozygosities from zero to 0.8438, and 0.2679 to 0.8264, respectively. In the cross-species amplifications, 13 out of 19 polymorphic loci were found to be also polymorphic in at least one of the 7 closely related species of the subfamily Gobioninae. These polymorphic microsatellite loci should provide sufficient level of genetic diversity to evaluate the fine-scale population structure in rare minnow and its closely related species for the conservation purpose.
Resumo:
The Neotropical genus Eigenmannia is a fish group with unknown species diversity where representatives possess a broad range of chromosomal sex determining systems namely XY/XX, X1X2Y/X1X1X2X2, ZZ/ZW as well as homomorphic sex chromosomes. To test the homology of two heteromorphic XY sex chromosome systems present in two sympatric populations, reciprocal cross-species FISH experiments were performed using probes derived by microdissection of X and Y chromosomes present in analyzed specimens of Eigenmannia virescens and Eigenmannia sp.2, respectively. While X and Y paint probes hybridized to species-specific sex chromosomes, in reciprocal cross-FISH both probes hybridized exclusively to autosomes. The result suggests multiple independent origins of the XY systems in the analyzed populations. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
White-lipped peccaries, Tayassu pecari, are neotropical ungulates whose populations have been declining in numerous locations within their geographical distribution. Here we describe 16 microsatellite loci isolated from T. pecari and their cross-amplification in collared peccaries, Pecari tajacu. In 30 individuals of T. pecari, a total of 32 alleles were found in ten polymorphic loci, ranging from 2 to 8 alleles per locus with a mean of 3.2. The expected and observed heterozygosity ranged from 0.143 to 0.802 and from 0 to 0.704, respectively. Two loci deviated from Hardy-Weinberg equilibrium. In P. tajacu, nine loci were polymorphic with a mean of 3.2 alleles per locus. These molecular markers will be useful to study the genetic status of peccary populations and, consequently, to help their conservation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family.Results: W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes.Conclusions: Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here. © 2013 Parise-Maltempi et al.; licensee BioMed Central Ltd.