990 resultados para Cropping system


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rice production symbolizes the single largest land use for food production on the Earth. The significance of this cereal as a source of energy and income seems overwhelming for millions of people in Asia, representing 90% of global rice production and consumption. Estimates indicate that the burgeoning population will need 25% more rice by 2025 than today's consumption. As the demand for rice is increasing, its production in Asia is threatened by a dwindling natural resource base, socioeconomic limitations, and uncertainty of climatic optima. Transplanting in puddled soil with continuous flooding is a common method of rice crop establishment in Asia. There is a dire need to look for rice production technologies that not only cope with existing limitations of transplanted rice but also are viable, economical, and secure for future food demand.Direct seeding of rice has evolved as a potential alternative to the current detrimental practice of puddling and nursery transplanting. The associated benefits include higher water productivity, less labor and energy inputs, less methane emissions, elimination of time and edaphic conflicts in the rice-wheat cropping system, and early crop maturity. Realization of the yield potential and sustainability of this resource-conserving rice production technique lies primarily in sustainable weed management, since weeds have been recognized as the single largest biological constraint in direct-seeded rice (DSR). Weed competition can reduce DSR yield by 30-80% and even complete crop failure can occur under specific conditions. Understanding the dynamics and outcomes of weed-crop competition in DSR requires sound knowledge of weed ecology, besides production factors that influence both rice and weeds, as well as their association. Successful adoption of direct seeding at the farmers' level in Asia will largely depend on whether farmers can control weeds and prevent shifts in weed populations from intractable weeds to more difficult-to-control weeds as a consequence of direct seeding. Sustainable weed management in DSR comprises all the factors that give DSR a competitive edge over weeds regarding acquisition and use of growth resources. This warrants the need to integrate various cultural practices with weed control measures in order to broaden the spectrum of activity against weed flora. A weed control program focusing entirely on herbicides is no longer ecologically sound, economically feasible, and effective against diverse weed flora and may result in the evolution of herbicide-resistant weed biotypes. Rotation of herbicides with contrasting modes of action in conjunction with cultural measures such as the use of weed-competitive rice cultivars, sowing time, stale seedbed technique, seeding rate, crop row spacing, fertilizer and water inputs and their application method/timing, and manual and mechanical hoeing can prove more effective and need to be optimized keeping in view the type and intensity of weed infestation. This chapter tries to unravel the dynamics of weed-crop competition in DSR. Technological issues, limitations associated with DSR, and opportunities to combat the weed menace are also discussed as a pragmatic approach for sustainable DSR production. A realistic approach to secure yield targets against weed competition will combine the abovementioned strategies and tactics in a coordinated manner. This chapter further suggests the need of multifaceted and interdisciplinary research into ecologically based weed management, as DSR seems inevitable in the near future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two field experiments were established in central Queensland at Capella and Gindie to investigate the immediate and then residual benefit of deep placed (20 cm) nutrients in this opportunity cropping system. The field sites had factorial combinations of P (40 kg P/ha), K (200 kg K/ha) and S (40 kg S/ha) and all plots received 100 kg N/ha. No further K or S fertilizers were added during the experiment but some crops had starter P. The Capella site was sown to chickpea in 2012, wheat in 2013 and then chickpea in 2014. The Gindie site was sown to sorghum in 2011/12, chickpea in 2013 and sorghum in early 2015. There were responses to P alone in the first two crops at each site and there were K responses in half the six site years. In year 1 (a good year) both sites showed a 20% grain yield response to only to deep P. In year 2 (much drier) the effects of deep P were still evident at both sites and the effects of K were clearly evident at Gindie. There was a suggestion of an additive P+K effect at Capella and a 50% increase for P+K at Gindie. Year 3 was dry and chickpeas at Capella showed a larger response to P+K but the sorghum at Gindie only responded to deep K. These results indicate that responses to deep placed P and K are durable over an opportunity cropping system, and meeting both requirements is important to achieve yield responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolutionary process of converting low-lying paddy fields into fish farms and its impact on agrarian communities in some selected areas of Mymensingh district were studied. This study was conducted through participatory rural appraisal (PRA) covering 12 villages from each of selected upazillas viz. Fulpur and Haluaghat of Mymensing [sic] district. A total of 12 PRA sessions were conducted where 90 farmers participated during 29 July to 26 August 2004. It is seen that the use of low-lying paddy fields was mostly confined to Broadcast Aman (B. Aman) rice production until 1960s. With the introduction of modern rice farming technology, the farmers started to produce Boro rice in Rabi season and B. Aman rice in Kharif season. With the passage of time, aquaculture technologies have been evolved and the farmers realized that fish farming is more profitable than rice cultivation, and then they started to utilize their paddy fields for alternate rice-fish farming and rice-cum-fish farming. Now a days, aquaculture based crop production system is in practice in more than 25% of the low-lying paddy fields. Conversion of rice fields in to fish ponds has brought up a change in the livelihood patterns of the rural farmers. The areas where the farmers involved themselves in the new production systems were fingerling collection, transportation and marketing of fry and fingerlings. During 1960s to 1970s, a few people used to culture fish in the permanent ponds for their own consumption, the species produced were rohu, catla, mrigal, ghainna, long whiskered catfish, freshwater shark (boal), snake head (shol) etc. Small fishes like climbing perch, stinging catfish, walking catfish, barb, minnows etc. were available in the rice fields during monsoon season. In 1980s to mid 1990s, some rice fields were converted into fish ponds and the people started to produce fish for commercial purposes. When rice-fish farming became profitable, a large number of people started converting their rice fields in to rice-fish culture ponds. Culture of some exotic fishes like silver carp, tilapia, grass carp, silver barb etc. also started in the paddy fields. Higher income from fish farming contributed positively in improving the housing, sanitation and education system in the study areas. It is seen that the medium and medium high lands were only used for alternate rice fish farming. The net income was high in any fish based cropping system that motivated the farmers to introduce fish based cropping system in the low-lying inland areas. As a result, the regional as well as communal income disparities occurred. However, the extraction of ground water became common during the dry period as the water was used for both rice and fish farming. Mass conversion of paddy fields into rice-fish culture ponds caused water logging in the study areas. In most cases, the participated farmers mentioned that they could be easily benefited by producing fish with T. Aman or only fish during the monsoon season. They agreed that this was an impressive technology to them and they could generate employment opportunities throughout the year. Finally, the social, economic and technical problems which are acting as constraints to rapid expansion of fish production system were reported from the interviewee.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

施用氮肥是提高作物产量和土壤有机碳(SOC)、氮(TSN)含量的重要养分管理措施。利用长期田间试验(19842~007),定量评价了常规耕作条件下5个施氮水平N 0(N0)、45(N45)、90(N90)、135(N135)和180(N180)kg/hm2处理下,小麦子粒产量、SOC、TSN和氮肥利用效率的变化。研究了施氮水平对黄土旱塬区小麦产量、SOC和TSN积累的影响。结果表明,19842~007年期间,N0、N45、N90、N135和N180处理小麦产量的平均值依次为1.2、2.4、2.9、3.2和3.4t/hm2;N0处理的小麦产量随试验年限而降低,年降低幅度达67 kg/hm2(P<0.001);但增施氮肥处理小麦产量降低趋势得到显著控制,当施氮水平提高到N 90 kg/hm2时,产量随年限呈现出缓慢升高的趋势。随着施氮水平的提高,地上部氮肥利用率由40%(N45)降低到28%(N180)。不同施氮水平条件下,SOC含量随年限呈缓慢升高趋势。23年后(2007年),N0、N45、N90、N135和N180处理下,0—20 cm土层SOC储量依次为16.9、18.2、18.7、19.0和19.1 t/...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

依据黄土旱塬区黑垆土上中国科学院长武站长期定位试验(始于1984年),于2008年3月到6月,测定了冬小麦连作系统中返青期、拔节期、抽穗期、灌浆期和收获期土壤呼吸日变化、生育期变化以及土壤可溶性有机碳(Dissolved organic C,DOC)和微生物量碳(Soil microbial biomass C,MBC),研究了施肥措施对土壤呼吸、DOC和MBC的影响以及土壤呼吸与碳组分之间的关系。研究涉及6个处理:休闲地(F)、不施肥(CK)、有机肥(M)、氮肥(N)、氮磷肥(NP)和氮磷有机肥(NPM)。结果表明,冬小麦连作系统中土壤呼吸的日变化格局呈单峰曲线,最高值出现在12:00左右(拔节期)和14:30左右(成熟期),最小值出现在0:00~3:00之间或6:00左右;冬小麦土壤呼吸速率拔节期最高,其次是灌浆后期,抽穗期最低;不同施肥条件下,各生育期土壤呼吸速率大小顺序:NPM>M>NP>N>CK>F。土壤水分亏缺是导致抽穗期和灌浆期土壤呼吸速率降低的重要原因。各施肥处理DOC含量高低顺序为灌浆期>抽穗期>成熟期>返青期>拔节期;除M,NPM处理MBC含量拔节期>灌浆期外,各施肥处理MBC含量高低顺序...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

黄土高原地区气候类型多样、地貌特征复杂、水土流失严重,造成农业生产条件在区域上存在很大差异,因此,有必要对耕作制度进行分区,以指导该区农业生产发展。以热量(≥0℃积温)、水分(降水量、干燥度)、地貌等作为分区指标,以县(区)为基本单元,采用地理位置-地貌-水旱作-熟制的命名方法,将该区划分为10个耕作区,并描述了各区的自然与社会条件、作物类型、主要耕作方式及发展方向等。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

了解轮作与施肥对土壤有机碳的影响是建立持续发展措施的关键。【方法】以长期定位试验(1984~2002)中的10个典型处理为基础,分析了地上部生物量和耕层(0~20cm)土壤有机碳变化,探讨半干旱区轮作和施肥对0~20cm土层有机碳的影响,10个典型处理分别为休闲(F);冬小麦连作体系中的3个施肥处理:不施肥(W/W+CK)、化肥(W/W+NP)、化肥有机肥(W/W+NP-FYM);冬小麦-冬小麦+糜子-豌豆轮作体系中的3个施肥处理:不施肥(W/WM/P+CK)、化肥(W/WM/P+NP)、化肥有机肥(W/WM/P+NP-FYM)处理;1个冬小麦—冬小麦-红豆草轮作处理(W/W/S+NP);人工苜蓿中2个施肥处理:不施肥(A/A+CK)和化肥有机肥处理(A/A+NP-FYM)。【结果】冬小麦连作体系(W/W)中,不施肥处理(W/W+CK)的地上部生物量平均为3.3t·ha-1,化肥处理(W/W+NP)和化肥有机肥处理(W/W+NP-FYM)依次为7.5和11.2t·ha-1;冬小麦-冬小麦+糜子-豌豆轮作(W/WM/P)体系中,不施肥处理(W/WM/P+CK)地上部生物量平均3.1t·ha-1,W/WM...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado, Estudos Integrados dos Oceanos, 26 Fevereiro de 2016, Universidade dos Açores.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La fertilisation phosphatée est très répandue dans les pratiques agricoles Nord-Américaines. Bien que généralement très efficace pour augmenter la production végétale, son utilisation peut engendrer certaines contaminations environnementales. Afin de diminuer ce problème, plusieurs pratiques de gestion sont envisagées. Parmi celles-ci, on retrouve l’intéressante possibilité de manipuler la flore microbienne car cette dernière est reconnue pour son implication dans bons nombres de processus fondamentaux liés à la fertilité du sol. Cette étude a démontré que lors d’essais en champs, la forme de fertilisant ajouté au sol ainsi que la dose de phosphore (P) appliquée avaient un impact sur la distribution des microorganismes dans les différentes parcelles. Une première expérience menée sur une culture de luzerne en prairie semi-aride a montré que les échantillons provenant de parcelles ayant reçu différentes doses de P présentaient des différences significatives dans leurs communautés bactériennes et fongiques. La communauté de CMA est restée similaire entre les différents traitements. Une deuxième expérience fut menée pendant trois saisons consécutives afin de déterminer l’effet de différentes formes de fertilisation organiques et minérale ajustées selon une dose unique de P sur les populations bactériennes et fongiques d’une culture intensive de maïs en rotation avec du soja. Les résultats des analyses ont montrés que les populations varient selon le type de fertilisation reçu et que les changements sont indépendants du type de végétaux cultivé. Par contre, les populations microbiennes subissent une variation plus marquée au cours de la saison de culture. La technique de DGGE a permis d’observer les changements frappant la diversité microbienne du sol mais n’a permis d’identifier qu’une faible proportion des organismes en cause. Parallèlement à cette deuxième étude, une seconde expérience au même site fut menée sur la communauté de champignons mycorhiziens à arbuscules (CMA) puisqu’il s’agit d’organismes vivant en symbiose mutualiste avec la majorité des plantes et favorisant la nutrition de même que l’augmentation de la résistance aux stress de l’hôte. Ceci permit d’identifier et de comparer les différents CMA présents dans des échantillons de sol et de racines de maïs et soja. Contrairement aux bactéries et aux champignons en général, les CMA présentaient une diversité très stable lors des différents traitements. Par contre, au cours des trois années expérimentales, il a été noté que certains ribotypes étaient significativement plus liés au sol ou aux racines. Finalement, l’ensemble de l’étude a démontré que la fertilisation phosphatée affecte la structure des communautés microbiennes du sol dans les systèmes évalués. Cependant, lors de chaque expérience, la date d’échantillonnage jouait également un rôle prépondérant sur la distribution des organismes. Plusieurs paramètres du sol furent aussi mesurés et ils présentaient aussi une variation au cours de la saison. L’ensemble des interactions possibles entre ces différents paramètres qui, dans certains cas, variaient selon le traitement appliqué, aurait alors probablement plus d’impact sur la biodiversité microbienne que la seule fertilisation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at four different sites. Host plants were grown in heated soils inoculated with AMF or the respective heat sterilized inoculum. In the case of peas, mutants resistant to AMF colonization were used as non-mycorrhizal controls. The mycorrhizal impact on yields and its components, transpiration, and P and N uptake was studied in several experiments, partly under varying P and N levels and water supply. Screening of native AMF by most probable number bioassays was not very meaningful. Soil monoliths were placed in the open to simulate field conditions. Inoculation with a native AMF mix improved grain yield, shoot and leaf growth variables as compared to control. Exposed to drought, higher soil water depletion of mycorrhizal plants resulted in a haying-off effect. The growth response to this inoculum could not be significantly reproduced in a subsequent open air pot experiment at two levels of irrigation and P fertilization, however, safflower grew better at higher P and water supply by multiples. The water use efficiency concerning biomass was improved by the AMF inoculum in the two experiments. Transpiration rates were not significantly affected by AM but as a tendency were higher in non-mycorrhizal safflower. A fundamental methodological problem in mycorrhiza field research is providing an appropriate (negative) control for the experimental factor arbuscular mycorrhiza. Soil sterilization or fungicide treatment have undesirable side effects in field and greenhouse settings. Furthermore, artificial rooting, temperature and light conditions in pot experiments may interfere with the interpretation of mycorrhiza effects. Therefore, the myc- pea mutant P2 was tested as a non-mycorrhizal control in a bioassay to evaluate AMF under field conditions in comparison to the symbiotic isogenetic wild type of var. FRISSON as a new integrative approach. However, mutant P2 is also of nod- phenotype and therefore unable to fix N2. A 3-factorial experiment was carried out in a climate chamber at high NPK fertilization to examine the two isolines under non-symbiotic and symbiotic conditions. P2 achieved the same (or higher) biomass as wild type both under good and poor water supply. However, inoculation with the AMF Glomus manihot did not improve plant growth. Differences of grain and straw yields in field trials were large (up to 80 per cent) between those isogenetic pea lines mainly due to higher P uptake under P and water limited conditions. The lacking N2 fixation in mutants was compensated for by high mineral N supply as indicated by the high N status of the pea mutant plants. This finding was corroborated by the results of a major field experiment at three sites with two levels of N fertilization. The higher N rate did not affect grain or straw yields of the non-fixing mutants. Very efficient AMF were detected in a Ferric Luvisol on pasture land as revealed by yield levels of the evaluation crop and by functional vital staining of highly colonized roots. Generally, levels of grain yield were low, at between 40 and 980 kg ha-1. An additional pot trial was carried out to elucidate the strong mycorrhizal effect in the Ferric Luvisol. A triplication of the plant equivalent field P fertilization was necessary to compensate for the mycorrhizal benefit which was with five times higher grain yield very similar to that found in the field experiment. However, the yield differences between the two isolines were not always plausible as the evaluation variable because they were also found in (small) field test trials with apparently sufficient P and N supply and in a soil of almost no AMF potential. This similarly occurred for pea lines of var. SPARKLE and its non-fixing mycorrhizal (E135) and non-symbiotic (R25) isomutants, which were tested in order to exclude experimentally undesirable benefits by N2 fixation. In contrast to var. FRISSON, SPARKLE was not a suitable variety for Mediterranean field conditions. This raises suspicion putative genetic defects other than symbiotic ones may be effective under field conditions, which would conflict with the concept of an appropriate control. It was concluded that AMF resistant plants may help to overcome fundamental problems of present research on arbuscular mycorrhiza, but may create new ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A field experiment with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata L.) and groundnut (Arachnis hypogeae L.) was conducted on severely P-deficient acid sandy soils of Niger, Mali and Burkina Faso to measure changes in pH and nutrient availability as affected by distance from the root surface and by mineral fertiliser application. Treatments included three rates of phosphorus (P) and four levels of nitrogen (N) application. Bulk, rhizosphere and rhizoplane soils were sampled at 35, 45 and 75 DAS in 1997 and at 55 and 65 DAS in 1998. Regardless of the cropping system and level of mineral fertiliser applied, soil pH consistently increased between 0.7 and two units from the bulk soil to the rhizoplane of millet. Similar pH gradients were observed in cowpea, but pH changes were much smaller in sorghum with a difference of only 0.3 units. Shifts in pH led to large increases in nutrient availability close to the roots. Compared with the bulk soil, available P in the rhizoplane was between 190 and 270% higher for P-Bray and between 360 and 600% higher for P-water. Exchangeable calcium (Ca) and magnesium (Mg) levels were also higher in the millet rhizoplane than in the bulk soil, whereas exchangeable aluminium (Al) levels decreased with increasing pH close to the root surface. The results suggest an important role of root-induced pH increases for crops to cope with acidity-induced nutrient deficiency and Al stress of soils in the Sudano-Sahelian zone of West Africa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increased use of cereal/legume crop rotation has been advocated as a strategy to increase cereal yields of subsistence farmers in West Africa, and is believed to promote changes in the rhizosphere that enhance early plant growth. In this study we investigated the microbial diversity of the rhizoplane from seedlings grown in two soils previously planted to cereal or legume from experimental plots in Gaya, Niger, and Kaboli, Togo. Soils from these legume rotation and continuous cereal plots were placed into containers and sown in a growth chamber with maize (Zea mays L.), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench.), cowpea (Vigna unguiculata L.) or groundnut (Arachis hypogaea L.). At 7 and 14 days after sowing, 16S rDNA profiles of the eubacterial and ammoniaoxidizing communities from the rhizoplane and bulk soil were generated using denaturing gradient gel electrophoresis (DGGE). Community profiles were subjected to peak fitting analyses to quantify the DNA band position and intensities, after which these data were compared using correspondence and principal components analysis. The data showed that cropping system had a highly significant effect on community structure (p <0.005), irrespective of plant species or sampling time. Continuous cereal-soil grown plants had highly similar rhizoplane communities across crop species and sites, whereas communities from the rotation soil showed greater variability and clustered with respect to plant species. Analyses of the ammonia-oxidizing communities provided no evidence of any effects of plant species or management history on ammonia oxidizers in soil from Kaboli, but there were large shifts with respect to this group of bacteria in soils from Gaya. The results of these analyses show that crop rotation can cause significant shifts in rhizosphere bacterial communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cereal yield increases in legume rotations on west African soils were the subject of much recent research aiming at the development of more productive cropping systems for the mainly subsistence-oriented agriculture in this region. However, little has been done to elucidate the possible contribution of soil microbiological factors to these rotation effects. Therefore a pot trial was conducted using legume rotation and continuous cereal soils each from one site in Burkina Faso and two sites in Togo where cropping system experiments had been conducted over 4 yrs. All soils were planted with seedlings of sorghum (Sorghum bicolor L. Moench). From 21 days after sowing onwards relative growth rates in rotation soils were higher than in the continuous cereal soils, resulting in between 69 and 500% higher shoot dry matter of rotation sorghum compared to sorghum growing in continuous cereal soils. Across sites rotation soils were characterized by higher pH, higher microbial N and a lower microbial biomass C/N ratio and, with the exception of one site, a higher fungal biomass in the rhizosphere. The bacterial and eukaryal community structure in the soil, assessed by denaturing gradient gel electrophoresis (DGGE), differed between sites. However, only at one site differed the bacterial and the eukaryal community structure in the rotation soil significantly from that in the continuous cereal soil. Although the results of this study confirmed the marked plantgrowth differences between sub-Saharan legume-rotation soils and their continuous cereal counterparts they also showed the difficulties to differentiate possible microbiological causes from their effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der Dissertation wurden die Effekte verschiedener C/N-Verhältnisse und verschiedener Verhältnisse von strukturellen zu löslichen Kohlenhydraten (NDF/SC) von Dung, der in bewässerten Gemüsekulturen im Norden Omans appliziert wurde, untersucht. Im auf sandigen Böden durchgeführten Experiment wurden zwei Büffeldungvarianten zum einen mit einem C/N-Verhältnis von 19 und einem NDF/SC-Verhältnis von 17 (ORG1) und zum anderen mit einem C/N-Verhältnis von 25 und einem NDF/SC-Verhältnis von 108 (ORG2) verwendet. Das relevante faktorielle Anbausystem war eine zweijährige Rotation, bestehend aus Rettich gefolgt von Blumenkohl und Karotte. Eine signifikante Zunahme der Erträge, des Sproßdurchmessers und der Pflanzenhöhe von Blumenkohl (P<0,001) sowie der Konzentration von Askorbinsäure in den Wurzeln von Rettich (P<0,01) mit erhöhter Verfügbarkeit von N, P und K von ORG2 über ORG1 bis hin zur Mineraldünger-Kontrollbehandlung (MIN) konnte festgestellt werden. Innerhalb von 260 Tagen wurden für die gesamte Anbauperiode mit einem photoakustischen Infrarot-Multigasmonitor und einer damit verbundenen Haube bodenbürtige Gasemissionen gemessen. Die errechneten Nettobilanzen zeigten Überschüsse von N und P, welche von Defiziten für K begleitet waren. Die Kohlenstoff Nettobilanzen waren während des Untersuchungszeitraums negativ oder nicht konsistent. Die Ergebnisse zeigen, dass unter extremen klimatischen Bedingungen bewässerter sandiger Böden organische Kultivierung zuerst durch den Kohlenstoffgehalt von Dung und Boden und erst dann durch die applizierten Mengen an N, P und K limitiert wird. Es konnte festgestellt werden, dass Gasemissionen den größten Teil der N und C Verluste von bewässerten sandigen Böden im Norden Omans darstellen. Die Reduzierung von Treibhausgasen und Sickerverlusten sollte weiterhin im Fokus zukünftiger Untersuchungen stehen, um zur Entwicklung von nachhaltigen organischen Anbausystemen im Oman und anderen ariden tropischen Ländern beizutragen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Global Environment Facility co-financed Soil Organic Carbon (GEFSOC) Project developed a comprehensive modelling system for predicting soil organic carbon (SOC) stocks and changes over time. This research is an effort to predict SOC stocks and changes for the Indian, Indo-Gangetic Plains (IGP), an area with a predominantly rice (Oryza sativa) - wheat (Triticum aestivum) cropping system, using the GEFSOC Modelling System and to compare output with stocks generated using mapping approaches based on soil survey data. The GEFSOC Modelling System predicts an estimated SOC stock for the IGP, India of 1.27, 1.32 and 1.27 Pg for 1990, 2000 and 2030, respectively, in the top 20 cm of soil. The SOC stock using a mapping approach based on soil survey data was 0.66 and 0.88 Pg for 1980 and 2000, respectively. The SOC stock estimated using the GEFSOC Modelling System is higher than the stock estimated using the mapping approach. This is due to the fact that while the GEFSOC System accounts for variation in crop input data (crop management), the soil mapping approach only considers regional variation in soil texture and wetness. The trend of overall change in the modelled SOC stock estimates shows that the IGP, India may have reached an equilibrium following 30-40 years of the Green Revolution. This can be seen in the SOC stock change rates. Various different estimation methods show SOC stocks of 0.57-1.44 Pg C for the study area. The trend of overall change in C stock assessed from the soil survey data indicates that the soils of the IGP, India may store a projected 1.1 Pg of C in 2030. (C) 2007 Elsevier B.V. All rights reserved.