84 resultados para Couplers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on silicon-on-insulator (SOI) technology, a Mach-Zehnder interferometer (MZI) is fabricated, in which two directional couplers serve as power splitter and combiner. The free carrier plasma dispersion effect of Si is adopted to achieve the phase modulation and the consequent intensity modulation of optical fields. The device presents an insertion loss of 2.61 dB and an extinction ratio of 19.6 dB. The rise time and fall time are 676 ns and 552 ns, respectively. Detailed analysis and explanation of the performance behaviors are also presented. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MMI coupler with large cross section has low coupling loss between the device and fiber. However, large chip area is required. Recently proposed N x N tapered MMI coupler shows a substantial reduction in device geometry. No such kind of devices with N > 2 has yet been realized up to now. The authors have demonstrated a 4 x 4 parabolically tapered MMI coupler with large cross section that can match the SM fiber in silicon-on-insulator (SOI) technology. The device exhibits a minimum uniformity of 0.36 dB and excess loss of 3.7 dB, It represents a key component for realization of MMI-based silicon integrated optical circuit technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical analysis of an electron waveguide coupler based on two quantum wires coupled by a magnetically defined barrier is presented with the use of the scattering-matrix method. For different geometry parameters and magnetic fields, tunneling transmission spectrum is obtained as a function of the electron energy. Different from that of conventional electron waveguide couplers, the transmission spectrum of the magnetically coupled quantum wires does not have the symmetry with regard to those geometrically symmetrical ports, It was found that the magnetic field in the coupling region drastically enhances the coupling between the two quantum wires for one specific input port while it weakens the coupling for the other input port. The results can be well understood by the formation of the edge states in the magnetically defined barrier region. Thus, whether these edge states couple or decouple to the electronic propagation modes in the two quantum wires, strongly depend on the relative moving directions of electrons in the propagating mode in the input port and the edge states in the magnetic region. This leads to a big difference in transmission coefficients between two quantum wires when injecting electrons via different input ports. Two important coupler specifications, the directivity and uniformity, are calculated which show that the system we considered behaves as a good quantum directional coupler. (C) 1997 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submicrometer channel and rib waveguides based on SOI (Silicon-On-Insulator) have been designed and fabricated with electron-beam lithography and inductively coupled plasma dry etching. Propagation loss of 8.39dB/mm was measured using the cut-back method. Based on these so-called nanowire waveguides, we have also demonstrated some functional components with small dimensions, including sharp 90 degrees bends with radius of a few micrometers, T-branches, directional couplers and multimode interferometer couplers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A kind of microstructured polymer optical fiber with elliptical core has been fabricated by adopting in-situ chemical polymerization technology and the secondary sleeving draw-stretching technique. Microscope photography demonstrates the clear hole-structure retained in the fiber. Though the holes distortion is visible, initial laser experiment indicates that light can be strongly confined in the elliptical core region, and the mode field is split obviously and presents the multi-mode characteristic. Numerical modeling is carried out for the real fiber with the measured parameters, including the external diameter of 150 pin, the average holes diameter of 3.3 mu m, and the average hole spacing of 6.3 mu m. by using full-vector plane wave method. The guided mode fields of the numerical simulation are consistent with the experiment result. This fiber shows the strong multi-mode and weak birefringence in the visible and near-infrared band, and has possibility for achieving the fiber mode convertors, mode selective couplers and so on.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved 2 ×2 silicon-on-insulator Mach-Zehnder thermo-optical switch is designed and fabricated, which is based on strongly guided multimode interference couplers and single- mode phase-shifting arms. The multimode interference couplers and input/output waveguides are deeply etched to improve coupler performances and coupler-waveguide coupling efficiencies. However, shallow etching is used in the phase-shifting arms to guarantee single-mode property. The strongly guided coupler presents an attractive uniformity about 0. 03 dB and a low propagation loss of -0.6 dB. The 2× 2 switch shows an insertion loss as low as -6.8 dB, where the fiber-waveguide coupling loss of -4.3 dB is included, and the response-time is measured as short as 6.8 μs, which are much better than our previous results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 2 x 2 Mach-Zehnder interferometer electrooptical switch integrated in silicon-on-insulator using multimode interference 3-dB couplers as splitter and combiner has been proposed and fabricated. Free carriers plasma dispersion effect was utilized to realize light modulation in silicon. Switching operation was achieved at an injection current of 358mA and which can be much reduced by optimizing the PIN structure and improving fabrication process. Extinction ratio of 7.7dB and crosstalk of 4.8dB has been observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis covers both the packaging of silicon photonic devices with fiber inputs and outputs as well as the integration of laser light sources with these same devices. The principal challenge in both of these pursuits is coupling light into the submicrometer waveguides that are the hallmark of silicon-on-insulator (SOI) systems. Previous work on grating couplers is leveraged to design new approaches to bridge the gap between the highly-integrated domain of silicon, the Interconnected world of fiber and the active region of III-V materials. First, a novel process for the planar packaging of grating couplers with fibers is explored in detail. This technology allows the creation of easy-to-use test platforms for laser integration and also stands on its own merits as an enabling technology for next-generation silicon photonics systems. The alignment tolerances of this process are shown to be well-suited to a passive alignment process and for wafer-scale assembly. Furthermore, this technology has already been used to package demonstrators for research partners and is included in the offerings of the ePIXfab silicon photonics foundry and as a design kit for PhoeniX Software’s MaskEngineer product. After this, a process for hybridly integrating a discrete edge-emitting laser with a silicon photonic circuit using near-vertical coupling is developed and characterized. The details of the various steps of the design process are given, including mechanical, thermal, optical and electrical steps. The interrelation of these design domains is also discussed. The construction process for a demonstrator is outlined, and measurements are presented of a series of single-wavelength Fabry-Pérot lasers along with a two-section laser tunable in the telecommunications C-band. The suitability and potential of this technology for mass manufacture is demonstrated, with further opportunities for improvement detailed and discussed in the conclusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for optical bandwidth continues to increase year on year and is being driven primarily by entertainment services and video streaming to the home. Current photonic systems are coping with this demand by increasing data rates through faster modulation techniques, spectrally efficient transmission systems and by increasing the number of modulated optical channels per fibre strand. Such photonic systems are large and power hungry due to the high number of discrete components required in their operation. Photonic integration offers excellent potential for combining otherwise discrete system components together on a single device to provide robust, power efficient and cost effective solutions. In particular, the design of optical modulators has been an area of immense interest in recent times. Not only has research been aimed at developing modulators with faster data rates, but there has also a push towards making modulators as compact as possible. Mach-Zehnder modulators (MZM) have proven to be highly successful in many optical communication applications. However, due to the relatively weak electro-optic effect on which they are based, they remain large with typical device lengths of 4 to 7 mm while requiring a travelling wave structure for high-speed operation. Nested MZMs have been extensively used in the generation of advanced modulation formats, where multi-symbol transmission can be used to increase data rates at a given modulation frequency. Such nested structures have high losses and require both complex fabrication and packaging. In recent times, it has been shown that Electro-absorption modulators (EAMs) can be used in a specific arrangement to generate Quadrature Phase Shift Keying (QPSK) modulation. EAM based QPSK modulators have increased potential for integration and can be made significantly more compact than MZM based modulators. Such modulator designs suffer from losses in excess of 40 dB, which limits their use in practical applications. The work in this thesis has focused on how these losses can be reduced by using photonic integration. In particular, the integration of multiple lasers with the modulator structure was considered as an excellent means of reducing fibre coupling losses while maximising the optical power on chip. A significant difficultly when using multiple integrated lasers in such an arrangement was to ensure coherence between the integrated lasers. The work investigated in this thesis demonstrates for the first time how optical injection locking between discrete lasers on a single photonic integrated circuit (PIC) can be used in the generation of coherent optical signals. This was done by first considering the monolithic integration of lasers and optical couplers to form an on chip optical power splitter, before then examining the behaviour of a mutually coupled system of integrated lasers. By operating the system in a highly asymmetric coupling regime, a stable phase locking region was found between the integrated lasers. It was then shown that in this stable phase locked region the optical outputs of each laser were coherent with each other and phase locked to a common master laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our work on single molecule magnets and multifunctional magnetic materials is presented in four projects. In the first project we show for first time that heteroatomic-type pseudohalides, such as OCN-, can be employed as structure-directing ligands and ferromagnetic couplers in higher oxidation state metal cluster chemistry. The initial use of cyanato groups in Mn cluster chemistry has afforded structurally interesting MnII/III14 (1) and MnII/III/IV16 (2) clusters in which the end-on bridging cyanates show a preference in binding through their O-atom. The Mn14 compound shows entirely visible out-of-phase alternating currect signals below 5 K and large hysteresis loops below 2 K. Furthermore, the amalgamation of azido groups with the triethanolamine tripodal ligand in manganese carboxylate cluster chemistry has led to the isolation of a new ferromagnetic, high-nuclearity and mixed-valence MnII/III15Na2 (3) cluster with a large ground-state spin value of S = 14. In the second project we demonstrate a new synthetic route to purely inorganic-bridged, transition metal-azido clusters [CoII7 (4) and NiII7 (5)] and coordination polymers [{FeII/III2}n (6)] which exhibit strong ferromagnetic, SMM and long-range magnetic ordering behaviors. We also show that access to such a unique ferromagnetic class of inorganic, N-rich and O-free materials is feasible through the use of Me3SiN3 as the azido-ligand precursor without requiring the addition of any organic chelating/bridging ligand. In the last projects we have tried to bring together molecular magnetism and optics via the synthesis of multifunctional magnetic materials based on 3d- or 4f-metal ions. We decided to approach such challenge from two different directions: firstly, in our third project, by the deliberate replacement of non-emissive carboxylato ligands in known 3d-SMMs with their fluorescent analogues, without perturbing the metal-core structure and SMM properties (complexes 7, 8, and 9). The second route (last project) involves the use of naphthalene or pyridine-based polyalcohol bridging ligands for the synthesis of new polynuclear LnIII metal clusters (Ln = lanthanide) with novel topologies, SMM behaviors and luminescent properties arising from the increased efficiency of the “antenna” organic group. This approach has led us to the isolation of two new families of LnIII8 (complexes 10-13) and LnIII4 (complexes 14-20) clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis deals with the fabrication and characterization of novel all-fiber components for access networks. All fiber components offer distinctive advantages due to low forward and backward losses, epoxy free optical path and high power handling. A novel fabrication method for monolithic 1x4 couplers, which are vital components in distributed passive optical networks, is realized. The fabrication method differs from conventional structures with a symmetric coupling profile and hence offers ultra wideband performance and easy process control. New structure for 1x4 couplers, by fusing five fibers is proposed to achieve high uniformity, which gives equivalent uniformity performance to 1x4 planar lightwave splitters, isolation in fused fiber WDM is improved with integration of long period gratings. Packaging techniques of fused couplers are analyzed for long term stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present, a fraction of 0.1 - 0.2% of the patients undergoing surgery become aware during the process. The situation is referred to as anesthesia awareness and is obviously very traumatic for the person experiencing it. The reason for its occurrence is mostly an insufficient dosage of the narcotic Propofol combined with the incapability of the technology monitoring the depth of the patient’s anesthetic state to notice the patient becoming aware. A solution can be a highly sensitive and selective real time monitoring device for Propofol based on optical absorption spectroscopy. Its working principle has been postulated by Prof. Dr. habil. H. Hillmer and formulated in DE10 2004 037 519 B4, filed on Aug 30th, 2004. It consists of the exploitation of Intra Cavity Absorption effects in a two mode laser system. In this Dissertation, a two mode external cavity semiconductor laser, which has been developed previously to this work is enhanced and optimized to a functional sensor. Enhancements include the implementation of variable couplers into the system and the implementation of a collimator arrangement into which samples can be introduced. A sample holder and cells are developed and characterized with a focus on compatibility with the measurement approach. Further optimization concerns the overall performance of the system: scattering sources are reduced by re-splicing all fiber-to-fiber connections, parasitic cavities are eliminated by suppressing the Fresnel reflexes of all one fiber ends by means of optical isolators and wavelength stability of the system is improved by the implementation of thermal insulation to the Fiber Bragg Gratings (FBG). The final laser sensor is characterized in detail thermally and optically. Two separate modes are obtained at 1542.0 and 1542.5 nm, tunable in a range of 1nm each. Mode Full Width at Half Maximum (FWHM) is 0.06nm and Signal to Noise Ratio (SNR) is as high as 55 dB. Independent of tuning the two modes of the system can always be equalized in intensity, which is important as the delicacy of the intensity equilibrium is one of the main sensitivity enhancing effects formulated in DE10 2004 037 519 B4. For the proof of concept (POC) measurements the target substance Propofol is diluted in the solvents Acetone and DiChloroMethane (DCM), which have been investigated for compatibility with Propofol beforehand. Eight measurement series (two solvents, two cell lengths and two different mode spacings) are taken, which draw a uniform picture: mode intensity ratio responds linearly to an increase of Propofol in all cases. The slope of the linear response indicates the sensitivity of the system. The eight series are split up into two groups: measurements taken in long cells and measurements taken in short cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modern society depends on an efficient communications system able to of transmitting and receiving information with a higher speed and reliability every time. The need for ever more efficient devices raises optimization techniques of microstrip devices, such as techniques to increase bandwidth: thicker substrates and substrate structures with EBG (Electromagnetic Band Gap) and PBG (Photonic Band Gap). This work has how aims the study of the application of PBG materials on substrates of planar structures in microstrip, more precisely in directional quadrature couplers and in rat-race and impedance of transformers. A study of the planar structures in microstrip and substrates EBG is presented. The PBG substrates can be used to optimize the radiation through the air, thus reducing the occurrence of surface waves and the resulting diffraction edge responsible for degradation of radiation pattern. Through specific programs in FORTRAN Power Station obtained the frequencies and couplings for each structure. Are used the program PACMO - Computer Aided Design in Microwave. Results are obtained of the frequency and coupling devices, ranging the frequency band used (cellular communication and Wimax systems) and the permittivity of the substrate, comparing the results of conventional material and PBG materials in the s and p polarizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiversity is organised into complex ecological networks of interacting species in local ecosystems, but our knowledge about the effects of habitat fragmentation on such systems remains limited. We consider the effects of this key driver of both local and global change on both mutualistic and antagonistic systems at different levels of biological organisation and spatiotemporal scales.There is a complex interplay of patterns and processes related to the variation and influence of spatial, temporal and biotic drivers in ecological networks. Species traits (e.g. body size, dispersal ability) play an important role in determining how networks respond to fragment size and isolation, edge shape and permeability, and the quality of the surrounding landscape matrix. Furthermore, the perception of spatial scale (e.g. environmental grain) and temporal effects (time lags, extinction debts) can differ markedly among species, network modules and trophic levels, highlighting the need to develop a more integrated perspective that considers not just nodes, but the structural role and strength of species interactions (e.g. as hubs, spatial couplers and determinants of connectance, nestedness and modularity) in response to habitat fragmentation.Many challenges remain for improving our understanding: the likely importance of specialisation, functional redundancy and trait matching has been largely overlooked. The potentially critical effects of apex consumers, abundant species and supergeneralists on network changes and evolutionary dynamics also need to be addressed in future research. Ultimately, spatial and ecological networks need to be combined to explore the effects of dispersal, colonisation, extinction and habitat fragmentation on network structure and coevolutionary dynamics. Finally, we need to embed network approaches more explicitly within applied ecology in general, because they offer great potential for improving on the current species-based or habitat-centric approaches to our management and conservation of biodiversity in the face of environmental change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem como objetivo geral analisar experimentalmente técnicas para medição de descargas parciais nos enrolamentos estatóricos de hidrogeradores. Para atingir o objetivo proposto, primeiramente foi realizado um estudo bibliográfico sobre como é a estrutura dos enrolamentos do estator, com ênfase na isolação elétrica, assim como os conceitos de descargas parciais e técnicas empregadas para medição em hidrogeradores. Em seguida, foi montado em laboratório um arranjo experimental para o estudo das técnicas de medição de descargas parciais nos enrolamentos do estator utilizando seis acopladores diferentes, sendo quatro acopladores capacitivos convencionais de 80, 220, 500 e 1000 pF, e dois sistemas experimentais, uma antena SSC fabricada com microfita e um cabo coaxial RG 58, desencapado, utilizado como antena. A avaliação da sensibilidade destes seis sistemas foi divida em duas etapas: primeiro foi analisada a resposta dos acopladores à aplicação de um sinal conhecido de calibração e, em seguida, foi analisada a resposta dos mesmos durante ensaios com alta tensão. Para aplicação de um sinal conhecido de calibração os acopladores capacitivos apresentaram maior sensibilidade em relação à antena e ao cabo coaxial. Já a resposta durante os ensaios com alta tensão mostrou que a sensibilidade da antena é maior que a do método convencional de medição de descargas parciais em hidrogeradores, baseado em acopladores capacitivos de 80 e 220 pF. Os resultados obtidos em laboratório mostraram que a medição de descargas parciais através da antena pode ser realizada de forma satisfatória na avaliação da condição operacional dos enrolamentos do estator de hidrogeradores, sem perda significativa de informação e com aumento significativo de sensibilidade na quantificação do fenômeno, cerca de duas vezes maior que a sensibilidade do acoplador de 220 pF e quatro vezes a do acoplador de 80 pF.