994 resultados para Coordination-compounds


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work outlines the historic development of the concept and main theories of energy transfer, as well as the principal experiments carried out to confirm or refute the proposed theories. Energy transfer in coordination compounds is also discussed with a focus on rare earth systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The centenary of Alfred Werner's Nobel Prize in Chemistry has prompted this retrospect on his important contributions for the development of stereochemistry and for the understanding of the nature of the coordination compounds. His genealogy has been described, including a discussion on the famous Jørgensen-Werner controversy. As an extension, it has also been reported the German biography of Heinrich Rheinboldt, the founder of the Chemistry School at the University of São Paulo, and his relation with Werner's scientific heritage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Life on earth depends on the absorption and conversion of solar energy into chemical bonds, i.e. photosynthesis. In this process, sun light is employed to oxidize water into oxygen and reducing equivalents used to produce fuels. In artificial photosynthesis, the goal is to develop relatively simple systems able to mimic photosynthetic organisms and promote solar-to-chemical conversion. The aim of the present review was to describe recent advances in the application of coordination compounds as catalysts in some key reactions for artificial photosynthesis, such as water splitting and CO2 reduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work addresses the use of chiral gas chromatography in resolving optically active stereoisomers and racemates found in fruit flavours. It presents the types of chiral selectors applied to terpene-derived metal coordination compounds, polysiloxane-linked α-amino acid and mixed chiral stationary phases, and focuses on derivatized cyclodextrins, the most popular chiral stationary phases presently used in chromatographic analysis. Knowledge about the techniques involved in chiral recognition and enantiomer identification in the fruit flavour field is given along with examples from the latest studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Taking into account the relevance of polyethylene for modern society and the role of catalysts for the production of this material, in the present work, we carried out a review of the main catalytic systems used in industry and academia. Most systems consist of coordination compounds, whose structural versatility allows the tuning of the characteristics of polyethylene for different applications. The structural aspects and chemical reactivity of such systems are discussed based on the existing literature and experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The preparation of chelated difluoroboron cations (DD)BF2+, where DD is a saturated polydentate tertiary-amine or polydentate aromatic ligand, has been systematically studied by using multinuclear solution and solid state nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. Three new methods of synthesis of (DD)BF2+ cations are reported, and compared with the previous method of reacting a chelating donor with Et20.BF3. The methods most effective for aromatic donors such as 1,1O-phenanthroline are ineffective for saturated polydentate tertiary-amines like N,N,N' ,Nil ,Nil-pentamethyldiethylenetriamine. Polydentate tertiary-amine donors that form 5-membered rings upon bidentate chelation were found to chelate effectively when the BF2 source contained two leaving groups (a heavy halide and a Lewis base such as pyridine =pyr or isoxazole =ISOX), i.e., pyr.BF2X (X = CI or Br), ISOX.BF2X and (pyr)2BF2+. Those that would form 6membered rings upon chelation do not chelate by any of the four methods. Polydentate aromatic ligands chelate effectively when the BF2 source contained a weak Lewis base, e.g., ISOX.BF3, ISOX.BF2X and Et20.BF3. Bidentate chelation by polydentate tertiaryamine and aromatic donors leads to nmr parameters that are significantly different then their (D)2BF2+ relatives (D =monod~ntate t-amines or pyridines). The chelated haloboron cations (DD)BFCI+, and (DD)BFBr+ were generated from D.BFX2 adducts for all ligands that form BF2+ cations above. In addition, the (DD)BCI2+ and (DD)BBr2+ cations were formed from D.BX3 adducts by the chelating aromatic ligands, except for the aromatic ligand 1,8-bis(dimethylamino)naphthalene, which formed only the (DD)BF2+ cation, apparently due to its extreme steric hindrance. Chelation by a donor is a two-step reaction. For polydentate tertiary-amine ligands, the two rates appear to be very dependent on the two possible leaving groups on the central boron atom. The order of increasing ease of displacement for the donors was: pyr < Cl < Br < ISOX. The rate of chelation by polydentate aromatic ligands appears to be dependent on the displacement of the first ligand from the boron. The order of increasing ease of displacement for the donors was: pyr < CI < ISOX ~ Br < Et20.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallo-organic chemistry,incorporating the frontiers of both inorganic and organic chemical aspects,is a topic of utility concern.The first exploration of coordinated metal complexes dates back to the ninettenth century,during the days of Alfred Werner.Thereafter,inorganic chemistry witnessed a great outflow of coordination compounds,with unique structural characteristics and diverse applicatons.The diversity in structures exhibited by the coordination complexes of multidentate ligands have led to their usage as sensors,models for enzyme mimetic centers,medicines etc.The liganda chosen are of prime importance in determining the properties of coordination compounds.Schiff bases are compounds obtained by the condensation of an aidehyde or ketone with an amine.The chemical properties of Schiff bases and their complexes are widely explored in recent years owing to their pharmacological activity,their catalytic activities and so on.On the other hand pseudohalides like azide and thiocyanate are versatile candidates for the construction of dimeric or polymeric complexes having excellent properties and diverse applications.So a combination of the Schiff bases and the pseudohalogens for the synthesis of metal complexes can bring about interesting results.An attempt into this area is the besis of this Ph.D theis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semicarbazones and their transition metal complexes have been receiving considerable attention because of their biological relevance and applications in the field of analysis and in the field of organic NLO materials. Their structural diversity also attracted inorganic chemists. A good deal of work has been reported on the synthesis and structural investigation of semicarbazones and their complexes. This is due partially to their capability of acting as multidentate, NO, NNO, ONO and ONNO donors with the formation of either mono or bi or polynuclear complexes. Their chemistry and pharmacological applications have been extensively investigated. Appreciable biological applications as well as diverse stereochemistry of their metal complexes prompted us to synthesize two new tridentate ONO donor N4-phenyl semicarbazones derived from 2-hydroxy-4-methoxyacetophenone and 2-hydroxy-4-methoxybenzophenone and their transition metal complexes. These ketones were selected since they can provide a further binding site from phenolic–OH and can thus increase the denticity. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 4,4′-dimethyl- 2,2′-bipyridine and 4-picoline and some pseudohalides like azide and thiocyanate ion can result in mixed ligand metal chelates with different geometries in coordination compounds In the present study, oxovanadium(IV), manganese(II), cobalt (II/III), nickel(II), copper(II) and zinc(II) complexes of 2-hydroxy-4- methoxyacetophenone-N4-phenylsemicarbazone (H2ASC) and 2-hydroxy-4- methoxybenzophenone-N4-phenylsemicarbazone (H2BSC) were synthesized and characterized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability of aroylhydrazones to bind with transition metals is a developing area of research interest and the coordinating properties of hydrazones can be tuned by the appropriate choice of parent aldehyde or ketone and the hydrazide. So in the present work we selected four different aroylhydrazones as principal ligands. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 3-picoline and pyridine leads to the syntheses of mixed ligand metal chelates which can cause different bonding modes, spectral properties and geometries in coordination compounds. The importance of aroylhydrazones and their complexes in various fields and their interesting coordinating properties stimulate our interest in the investigation of transition metal chelates with four different aroylhydrazones. The aroylhydrazones selected are 4-benzyloxy-2-hydroxybenzaldehyde-4-nitrobenzoylhydrazone dimethylformamide monosolvate, 5-bromo-2-hydroxy-3-methoxybenzaldehyde nicotinoylhydrazone dihydrate methanol monosolvate, 4-diethylamino-2- hydroxybenzaldehyde nicotinoylhydrazone monohydrate and 2-benzoylpyridine- 4-nitrobenzoylhydrazone. The selection of 4-benzyloxy-2-hydroxybenzaldehyde- 4-nitrobenzoylhydrazone was based on the idea of developing ligands having D-π-A general structure, so that the proligand and metal complexes exhibit NLO activity. Hence it is interesting to explore the coordinating capabilities of the synthesized hydrazones and to study the NLO activity of hydrazones and some of the metal complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three double phenoxido-bridged dinuclear nickel(II) complexes, namely [Ni-2(L-1)(2)(NCS)(2)] (1), [Ni-2(L-2)(2)(NCS)(2)] (2), and [Ni-2(L-3)(2)(NCS)(2)] (3) have been synthesized using the reduced tridentate Schiff-base ligands 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL1), 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL2), and 2-[1-(3-dimethylarnino-propylamino)-ethyl]-phenol (HL3), respectively. The coordination compounds have been characterized by X-ray structural analyses, magnetic-susceptibility measurements, and various spectroscopic methods. In all complexes, the nickel(II) ions are penta-coordinated in a square-pyramidal environment, which is severely distorted in the case of 1 (Addison parameter tau = 0.47) and 3 (tau = 0.29), while it is almost perfect for 2 (tau = 0.03). This arrangement leads to relatively strong antiferromagnetic interactions between the Ni(II) (S = 1) metal centers as mediated by double phenoxido bridges (with J values of -23.32 (1), -35.45 (2), and -34.02 (3) cm(3) K mol(-1), in the convention H = -2JS(1)S(2)). The catalytic activity of these Ni compounds has been investigated for the aerial oxidation of 3,5-di-tert-butylcatechol. Kinetic data analysis following Michaelis-Menten treatment reveals that the catecholase activity of the complexes is influenced by the flexibility of the ligand and also by the geometry around the metal ion. Electrospray ionization mass spectroscopy (ESI-MS) studies (in the positive mode) have been performed for all the coordination compounds in the presence of 3,5-DTBC to characterize potential complex-substrate intermediates. The mass-spectrometry data, corroborated by electron paramagnetic resonance (EPR) measurements, suggest that the metal centers are involved in the catecholase activity exhibited by the complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ruthenium compounds have been actively studied as metallodrugs for cancer therapy. Representatives of ruthenium-based antitumor drugs are the classes of ruthenium(III)-chlorido-(N-ligand)complexes, including the drugs namely NAMI-A and KP1019 in clinical trials, and ruthenium(II)-arene organometallics, with some compounds currently undergoing advanced preclinical testing. An alternative approach for tumor-inhibiting metallodrugs is the coordination of metal ions to organic pharmaceuticals. The combination of antitumor-active ruthenium ion with biologically-active pro-ligands in single compounds can result in the enhancement of activity, for example through synergistic effects. In the present article, some developments in the ruthenium-based antitumor drugs field are briefly highlighted and recent studies on mixed diruthenium-organic drugs as metallopharmaceuticals in cancer therapy are described. Novel organic pharmaceuticals-containing diruthenium(II, III)complexes have shown promising antitumor activity for C6 rat glioma - a model for glioblastoma multiforme (GBA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New lanthanide complexes with benzeneseleninic (ABSe) and 4-chloro-benzeneseleninic (ABSeCl) acids have been synthesized and characterized by elemental analysis, infrared and UV-visible spectroscopies. The emission spectra of the trivalent europium complexes presented the typical electronic (5)D(0) -> (7)F(j) transitions of the ion (J = 0-4). The ground-state geometries of the europium complexes have been calculated by using the Sparkle/AM1 model. From these results, the 4f-4f intensity parameters and energies of the ligand singlet and triplet excited states have been obtained. The lower emission quantum yield for the [Eu(ABSe)(3)(H(2)O)(2)](H(2)O)(2) compound, as compared to the [Eu(Al(3)SeCl)(3)(H(2)O)(2)] one, can be associated to the higher numbers of water molecules, in the first and second coordination spheres, that contribute to the luminescence quenching. The [Eu(Al(3)Se)(3)(H(2)O)(2)](H(2)O)(2) complex presents an intermediate state whose energy difference with respect to the first excited singlet state is resonant with three phonons from the water molecules, favouring a multiphonon relaxation process from the singlet state followed by a fast internal conversion process; this effect is less pronounced in the complex with the ABSeCl ligand. The luminescence decay curves of the gadolinium complexes indicate that the level responsible for the intramolecular energy transfer process has a triplet character for both compounds. The nephelauxetic effect in these compounds was investigated under the light of a recently proposed covalency scale based on the concept of overlap polarizability of the chemical bond. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work were synthesized and studied the spectroscopic and electrochemical characteristics of the coordination compounds trans-[Co (cyclam)Cl2]Cl, trans- Na[Co(cyclam)(tios)2], trans-[Co(en)2Cl2]Cl and trans-Na[Co(en)2(tios)2], where tios = thiosulfate and en = ethylenediamine. The compounds were characterized by: Elemental Analysis (CHN), Absorption Spectroscopy in the Infrared (IR), Uv-Visible Absorption Spectroscopy, Luminescence Spectroscopy and Electrochemistry (cyclic voltammetry). Elemental Analysis (CHN) suggests the following structures for the complex: trans- [Co(cyclam)Cl2]Cl.6H2O and trans-Na[Co(cyclam)(tios)2].7H2O. The electrochemical analysis, when compared the cathodic potential (Ec) processes of the complexes trans- [Co(cyclam)Cl2]Cl and trans-[Co(en)2Cl2]Cl, indicated a more negative value (-655 mV) for the second complex, suggesting a greater electron donation to the metal center in this complex which can be attributed to a greater proximity of the nitrogen atoms of ethylenediamine in relation to metal-nitrogen cyclam. Due to the effect of setting macrocyclic ring to the metal center, the metal-nitrogen bound in the cyclam are not as close as the ethylenediamine, this fact became these two ligands different. Similar behavior is also observed for complexes in which the chlorides are replaced by thiosulfate ligand, trans-Na[Co(en)2(tios)2] (-640 mV) and trans-Na[Co(cyclam)(tios)2] (-376 mV). In absorption spectroscopy in the UV-visible, there is the band of charge transfer LMCT (ligand p d* the metal) in the trans-Na[Co(cyclam)(tios)2] (350 nm, p tios  d* Co3+) and in the trans-Na[Co(en)2(tios)2] (333 nm, p tios d* Co3+), that present higher wavelength compared to complex precursor trans- [Co(cyclam)Cl2]Cl (318 nm, pCl  d* Co3+), indicating a facility of electron density transfer for the metal in the complex with the thiosulfate ligand. The infrared analysis showed the coordination of the thiosulfate ligand to the metal by bands in the region (620-635 cm-1), features that prove the monodentate coordination via the sulfur atom. The νN-H bands of the complexes with ethylenediamine are (3283 and 3267 cm-1) and the complex with cyclam bands are (3213 and 3133 cm-1). The luminescence spectrum of the trans-Na[Co(cyclam)(tios)2] present charge transfer band at 397 nm and bands dd at 438, 450, 467, 481 and 492 nm.