929 resultados para Controlled Branching Process


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flexible information exchange is critical to successful design-analysis integration, but current top-down, standards-based and model-oriented strategies impose restrictions that contradicts this flexibility. In this article we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks. We then discuss how a shared mapping process that is flexible and user friendly supports non-programmers in creating these custom connections. Adopting a services-oriented system architecture, we propose a web-based platform that enables data, semantics and models to be shared on the fly. We then discuss potential challenges and opportunities for its development as a flexible, visual, collaborative, scalable and open system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flexible information exchange is critical to successful design integration, but current top-down, standards-based and model-oriented strategies impose restrictions that are contradictory to this flexibility. In this paper we present a bottom-up, user-controlled and process-oriented approach to linking design and analysis applications that is more responsive to the varied needs of designers and design teams. Drawing on research into scientific workflows, we present a framework for integration that capitalises on advances in cloud computing to connect discrete tools via flexible and distributed process networks. Adopting a services-oriented system architecture, we propose a web-based platform that enables data, semantics and models to be shared on the fly. We discuss potential challenges and opportunities for the development thereof as a flexible, visual, collaborative, scalable and open system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A basic lectin (pI approximately 10.0) was purified to homogeneity from the seeds of winged bean (Psophocarpus tetragonolobus) by affinity chromatography on Sepharose 6-aminocaproyl-D-galactosamine. The lectin agglutinated trypsinized rabbit erythrocytes and had a relative molecular mass of 58,000 consisting of two subunits of Mr 29,000. The lectin binds to N-dansylgalactosamine, leading to a 15-fold increase in dansyl fluorescence with a concomitant 25-nm blue shift in the emission maximum. The lectin has two binding sites/dimer for this sugar and an association constant of 4.17 X 10(5) M-1 at 25 degrees C. The strong binding to N-dansylgalactosamine is due to a relatively positive entropic contribution as revealed by the thermodynamic parameters: delta H = -33.62 kJ mol-1 and delta S0 = -5.24 J mol-1 K-1. Binding of this sugar to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of D-galactose. Studies with other sugars indicate that a hydrophobic substituent in alpha- conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are critical for sugar binding to this lectin. Lectin difference absorption spectra in the presence of N-acetylgalactosamine indicate perturbation of tryptophan residues on sugar binding. The results of stopped flow kinetics with N- dansylgalactosamine and the lectin are consistent with a simple one- step mechanism for which k+1 = 1.33 X 10(4) M-1 s-1 and k-1 = 3.2 X 10(- 2) s-1 at 25 degrees C. This k-1 is slower than any reported for a lectin-monosaccharide complex so far. The activation parameters indicate an enthalpically controlled association process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interdiffusion coefficient in Ni(Mo) solid solution, impurity diffusion of Mo in Ni, average interdiffusion coefficient of the NiMo-sigma phase and activation energies for diffusion in solid solution and in the sigma phase of the Ni-Mo binary system are evaluated through the diffusion couple approach. These results are utilized to identify the possible diffusion mechanism. Low activation energy in the sigma phase indicates a grain-boundary-controlled diffusion process. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solid state reactive diffusion in binary Au-Sn system has been studied using the diffusion couple consisting of pure elements Au and Sn annealed in the temperature range of 180-100 degrees C for 25 h Interdiffusion zone consists of four intermetallic phases Au5Sn, AuSn, AuSn2, and AuSn4 Activation energy for parabolic growth constant and integrated diffusivity for each phase has been calculated to indicate about the possible mechanism for diffusion controlled growth process Parabolic growth constant of individual phases has also been compared Kirkendall marker plane position has been indicated in the interdiffusion zone and furthermore the ratio of intrinsic diffusivities of species has also been determined. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

he thickness dependence of the electrical properties in the thin films of uniaxial SrBi2Nb2O9 has been studied in this report. According to many published literatures, it could be an effective way to identify the basic conduction process. The laser ablation was chosen as the deposition technique to ensure an oriented growth and a proper stoichiometric deposition. The structural, dielectric and conduction properties were studied as a function of thickness. The films showed good ferroelectric properties, an ordered growth, and a space-charge controlled conduction process, which was double checked by reversing the polarity of the applied voltage, and also by examining the high field current response of the sample varying in thickness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Important diffusion parameters, such as-parabolic growth constant, integrated diffusivity, ratio of intrinsic diffusivities of species Ni and Sn, Kirkendall marker velocity and the activation energy for diffusion kinetics of binary Ni3Sn4 phase have been investigated with the help of incremental diffusion couple technique (Sn/Ni0.57Sn0.43) in the temperature range 200-150 degrees C. Low activation energy extracted from Arrhenius plot indicates grain boundary controlled diffusion process. The species Sn is three times faster than Ni at 200 degrees C. Further, the activation energy of Sn tracer diffusivity is greater than that of Ni.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Digestive ripening, a postsynthetic treatment of colloidal nanoparticles, is a versatile method to produce monodisperse nanoparticles and to prepare various bimetallic nanostructures. The mechanism of this process is largely unknown. Herein, we present a systematic study conducted using Au nanoparticles prepared by a solvated metal atom dispersion method to probe the mechanistic aspects of digestive ripening. In our study, experimental conditions such as concentration of capping agent, reaction time, and temperature, were found to influence the course of the digestive ripening process. Here it is shown that, during digestive ripening under reflux, nanoparticles within an optimum size window are conserved, and surface etching facilitated mass transfer resulted in monodisperse nanoparticles. Overall, digestive ripening can be considered as a kinetically controlled thermodynamic process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanisms of densification and creep were examined during spark plasma sintering (SPS) of alumina doped with a low and high level of zirconia or yttria, over a temperature range of 1173-1573 K and stresses between 25 and 100 MPa. Large additions of yttria led clearly to in situ reactions during SPS and the formation of a yttrium-aluminum garnet phase. Dopants generally lead to a reduction in the densification rate, with substantial reductions noted in samples with similar to 5.5 vol% second phase. In contrast to a stress exponent of n similar to 1 for pure alumina, the doped aluminas displayed n similar to 2 corresponding to an interface-controlled diffusion process. The higher activation energies in the composites are consistent with previous data on creep and changes in the interfacial energies. The results reveal a compensation effect, such that an increase in the activation energy is accompanied by a corresponding increase in the pre-exponential term for diffusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work attempts to bring critical insights into the electromagnetic shielding efficiency in polymeric nanocomposites with respect to the particle size of magnetic nanoparticles added along with or without a conductive inclusion. To gain insight, various Ni-Fe (NixFe1-x; x = 10, 20, 40; Ni: nickel, Fe: iron) alloys were prepared by a vacuum arc melting process and different particle sizes were then achieved by a controlled grinding process for different time scales. Poly(vinylidene fluoride), PVDF based composites involving different particle sizes of the Ni-Fe alloy were prepared with or without multiwall carbon nanotubes (MWNTs) by a wet grinding approach. The Ni-Fe particles were thoroughly characterized with respect to their microstructure and magnetization; and the electromagnetic (EM) shielding efficiency (SE) of the resulting composites was obtained from the scattering parameters using a vector network analyzer in a broad range of frequencies. The saturation magnetization of Ni-Fe nanoparticles and the bulk electrical conductivity of PVDF/Ni-Fe composites scaled with increasing particle size of NiFe. Interestingly, the PVDF/Ni-Fe/MWNT composites showed a different trend where the bulk electrical conductivity and SE scaled with decreasing particle size of the Ni-Fe alloy. A total SE of similar to 35 dB was achieved with 50 wt% of Ni60Fe40 and 3 wt% MWNTs. More interestingly, the PVDF/Ni-Fe composites shielded the EM waves mostly by reflection whereas, the PVDF/Ni-Fe/MWNT shielded mostly by absorption. A minimum reflection loss of similar to 58 dB was achieved in the PVDF/Ni-Fe/MWNT composites in the X-band (8-12 GHz) for a particular size of Ni-Fe alloy nanoparticles. This study brings new insights into the EM shielding efficiency in PVDF/magnetic nanoparticle based composites in the presence and absence of conducting inclusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The O18/O16, C13/C12, and D/H ratios have been determined for rocks and coexisting minerals from several granitic plutons and their contact metamorphic aureoles in northern Nevada, eastern California, central Colorado, and Texas, with emphasis on oxygen isotopes. A consistent order of O18/O16, C13/C12, and D/H enrichment in coexisting minerals, and a correlation between isotopic fractionations among coexisting mineral pairs are in general observed, suggesting that mineral assemblages tend to approach isotopic equilibrium during contact metamorphism. In certain cases, a correlation is observed between oxygen isotopic fractionations of a mineral pair and sample distance from intrusive contacts. Isotopic temperatures generally show good agreement with heat flow considerations. Based on the experimentally determined quartz-muscovite O18/O16 fractionation calibration curve, temperatures are estimated to be 525 to 625°C at the contacts of the granitic stocks studied.

Small-scale oxygen isotope exchange effects between intrusive and country rock are observed over distances of 0.5 to 3 feet on both sides of the contacts; the isotopic gradients are typically 2 to 3 per mil per foot. The degree of oxygen isotopic exchange is essentially identical for different coexisting minerals. This presumably occurred through a diffusion-controlled recrystallization process. The size of the oxygen isotope equilibrium systems in the small-scale exchanged zones vary from about 1.5 cm to 30 cm. A xenolith and a re-entrant of country rock projecting into on intrusive hove both undergone much more extensive isotopic exchange (to hundreds of feet); they also show abnormally high isotopic temperatures. The marginal portions of most plutons have unusually high O18/O16 ratios compared to "normal" igneous rocks, presumably due to large-scale isotopic exchange with meta-sedimentary country rocks when the igneous rocks were essentially in a molten state. The isotopic data suggest that outward horizontal movement of H2O into the contact metamorphic aureoles is almost negligible, but upward movement of H2O may be important. Also, direct influx and absorption of water from the country rock may be significant in certain intrusive stocks.

Except in the exchanged zones, the O18/O16 ratios of pelitic rocks do not change appreciably during contact metamorphism, even in the cordierite and sillimanite grades; this is in contrast to regional metamorphic rocks which commonly decrease in O18 with increasing grade. Low O18/O16 and C13/C12 ratios of the contact metamorphic marbles generally correlate well with the presence of calc-silicate minerals, indicating that the CO2 liberated during metamorphic decarbonation reactions is enriched in both O18 and C13 relative to the carbonates.

The D/H ratios of biotites in the contact metamorphic rocks and their associated intrusions show a geographic correlation that is similar to that shown by the D/H ratios of meteoric surface waters, perhaps indicating that meteoric waters were present in the rocks during crystallization of the biotites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we developed an electrochemical method for the detection of hydrazine based oil palladium nanoparticle/carbon nanofibers (Pd/CNFs). Pd/CNFs were prepared by electrospinning technique and subsequent thermal treatments. The electrocatalytic behaviors of Pd/CNFs modified glassy carbon electrode (Pd/CNF-GCE) for hydrazine oxidation were evaluated by cyclic voltammetry (CV), an obvious and well-defined oxidation peak appeared at -0.32 V (vs. Ag/AgCl). The mechanism of the oxidation of hydrazine at Pd/CNF-GCE was also studied, which demonstrated an irreversible diffusion-controlled electrode process and a four-electron transfer involved in the overall reaction. Furthermore, the wide linear range, low detection limit, good reproducibility and excellent storage stability were obtained utilizing differential pulse voltammetry (DPV).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, microperoxidase-11 (MP-11) was immobilized on glassy carbon electrode surface modified with chitosan by physical adsorption. The direct electrochemistry and the electrocatalytic behaviours to O-2 and the H2O2 of MP-11 on glassy carbon electrode modified with chitosan were characterized by cyclic voltammetry. The results indicate that MP-11 on modified electrode displays a quasi-reversible electrochemical process coupled with proton transfer in the phosphate buffer solutions(pH = 7.12). Direct electrochemical reaction of MP-11 on modified electrode has been realized. MP-11 on modified electrode can catalyze reduction for O-2 and H2O2. Both of the catalytic reductions are surface-controlled electrochemical process.