987 resultados para Continuous exposure
Resumo:
Burnout is a psychological syndrome triggered in response to continuous exposure to interpersonal stressors. It is considered a multifactorial construct, which is commonly characterized by three dimensions: emotional exhaustion, dehumanization, and lack of personal accomplishment.This study aimed to verify if the three characteristics of burnout (exhaustion, lack of dehumanization and personal accomplishment) are present in people working as guides Tourism in Natal - RN. It is a descriptive and quantitative study. 109 subjects were surveyed. Data collection was done through the use of questionnaires, the instrument used was the characterization of the Burnout Scale (ECB) created and validated in Brazil by Trocoli and Tamayo (2000). In order to analyze data we used descriptive statistics, analysis of core measures, exploratory and confirmatory factor analysis, reliability analysis, cluster analysis, multiple discriminant and Spearman correlation. Factor analysis identified four factors that explain 58.3% of the total variance. Those factors were named exhaustion, deception, avoidance, and dehumanization. The reliability of the instrument, as measured by Cronbach's Alpha was 0.918, which is considered excellent reliability. The 109 subjects were grouped into three cluster, which had the deception, avoidance, and dehumanization as discriminant. It is possible to conclude that the characteristics of burnout syndrome are present in the studied population where 19 people are on the high level of burnout, moderate in 32 and 56 in the light. The correlations between socio-demographic variables studied and the dimensions of burnout, were few and weak. The variable leave for health reasons in the study appeared to be related to feelings of exhaustion and avoidance behavior appeared related to younger individuals and who work only in the activity of Receptive Tourism Guide. Verification of the incidence of burnout in individuals surveyed suggest the need to adopt intervention strategies are individual, organizational and / or combined
Resumo:
Dissertação de Mestrado, Biologia Molecular e Microbiana, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/µm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately following irradiation in a dose-dependent manner. The analysis of repair capability showed that the cells irradiated with 1 and 2 Gy almost completely recovered from the damage, but not, however, 3 Gy treated cells in which DNA damage was not recovered. In addition, the results indicate the importance of the use of an appropriate control in radiobiological in vitro analysis.
Resumo:
BACKGROUND: In patients with outer retinal degeneration, a differential pupil response to long wavelength (red) versus short wavelength (blue) light stimulation has been previously observed. The goal of this study was to quantify differences in the pupillary re-dilation following exposure to red versus blue light in patients with outer retinal disease and compare them with patients with optic neuropathy and with healthy subjects. DESIGN: Prospective comparative cohort study. PARTICIPANTS: Twenty-three patients with outer retinal disease, 13 patients with optic neuropathy and 14 normal subjects. METHODS: Subjects were tested using continuous red and blue light stimulation at three intensities (1, 10 and 100 cd/m2) for 13 s per intensity. Pupillary re-dilation dynamics following the brightest intensity was analysed and compared between the three groups. MAIN OUTCOME MEASURES: The parameters of pupil re-dilation used in this study were: time to recover 90% of baseline size; mean pupil size at early and late phases of re-dilation; and differential re-dilation time for blue versus red light. RESULTS: Patients with outer retinal disease showed a pupil that tended to stay smaller after light termination and thus had a longer time to recovery. The differential re-dilation time was significantly greater in patients with outer retinal disease (median = 28.0 s, P < 0.0001) compared with controls and patients with optic neuropathy. CONCLUSIONS: A differential response of pupil re-dilation following red versus blue light stimulation is present in patients with outer retinal disease but is not found in normal eyes or among patients with visual loss from optic neuropathy.
Resumo:
This work investigated the personal exposure to indoor particulate matters using the intake fraction metric and provided a possible way to trace the particle inhaled from an indoor particle source. A turbulence model validated by the particle measurements in a room with underfloor air distribution (UFAD) system was used to predict the indoor particle concentrations. Inhalation intake fraction of indoor particles was defined and evaluated in two rooms equipped with the UFAD, i.e., the experimental room and a small office. According to the exposure characteristics and a typical respiratory rate, the intake fraction was determined in two rooms with a continuous and episodic (human cough) source of particles, respectively. The findings showed that the well-mixing assumption of indoor air failed to give an accurate estimation of inhalation exposure and the average concentration at return outlet or within the overall room could not relate well the intake fraction to the amount of particle emitted from an indoor source.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper describes two simple thermal methods for measuring the energy fluence in J/cm 2 from a diagnostic x-ray exposure. Both detectors absorb essentially 100% of the radiation and give a signal that is directly proportional to the energy fluence of the x-ray beam. One detector measures the thermal effect when a pulse of x rays is totally absorbed in the pyroelectric detector of lead-zirconium-titanate (PZT). The other detector measures the expansion of a gas surrounding a lead disk detector in a photoacoustic chamber. The increased pressure of the gas is transmitted through a 1-mm duct to a sensitive microphone. Both detectors have previously been used to measure the energy fluence rate of continuous x-ray beams in the same energy region using a chopped beam and a lock-in amplifier. Measurement of the energy fluence of a pulse of radiation eliminates the need for the beam chopper and lock-in amplifier and results in a simple, rugged, and inexpensive dosimeter. Either method can be combined with the area of the beam to give an estimate of the imparted energy to the patient from a diagnostic x-ray exposure.
Resumo:
To establish safety parameters, we in vitro studied the increase in intrapulpal temperature caused by the use of a cw CO2 laser. A thermistor was implanted in the inner part of the pulpal chamber of 25 human lower third molars to measure the intrapulpal temperature produced by laser powers between 2-10 W and exposure times of 0.5-25.0 s. The Pearson linear correlation factor applied to the measured values showed there is a direct relationship between the independent variable and the applied power. A variance analysis produced the linear regression equation: T=1.10+(0.127)E where T is the temperature and E the energy. The results showed that, with a power of 4 W and maximum exposure time of 2.5 s (10 J) and a power density of 12738.85 W cm-2, there will be no damaging reactions affecting the pulpal tissues.
Resumo:
Four populations in the Amazon area were selected for a comparative study of mercury-exposed and non-exposed populations: São Luiz do Tapajós, Barreiras, Panacauera, and Pindobal Grande. The highest mercury levels in human hair samples were found in São Luiz do Tapajós and Barreiras, greatly exceeding the limits established by the World Health Organization. Panacauera showed an intermediate level below 9 µg/g. This was the first comparative and simultaneous evaluation of mercury exposure in the Amazon area. Also, thanks to this type of monitoring, we were able to eliminate the uncertainties about the reference dose. On the basis of these data, we can conclude that the mercury levels detected in exposed populations of the Tapajós River basin may be dangerous not only because they are above the World Health Organization limits, but also because the simultaneous mercury detection in non-exposed populations with similar characteristics provided a valid control and revealed lower mercury levels. Our results support the importance of continuous monitoring in both exposed and non-exposed populations.
Resumo:
An investigation was conducted to test the hypothesis that the storage time of packaging sterility has no effect on contamination susceptibility even under deliberate bacterial exposure (Serratia marcescens). No growth of the test microorganisms was identified in the experimental group in any of the storage intervals (7, 14, 28, 90, and 180 days). Current recommendations/guidelines suggest that contamination of packaging occurs only because of events. This study, done in vitro, supports these recommendations. Copyright (c) 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Resumo:
Objective: The purpose of this study was to investigate the rat skin penetration abilities of two commercially available low-level laser therapy (LLLT) devices during 150 sec of irradiation. Background data: Effective LLLT irradiation typically lasts from 20 sec up to a few minutes, but the LLLT time-profiles for skin penetration of light energy have not yet been investigated. Materials and methods: Sixty-two skin flaps overlaying rat's gastrocnemius muscles were harvested and immediately irradiated with LLLT devices. Irradiation was performed either with a 810 nm, 200mW continuous wave laser, or with a 904 nm, 60mW superpulsed laser, and the amount of penetrating light energy was measured by an optical power meter and registered at seven time points (range, 1-150 sec). Results: With the continuous wave 810nm laser probe in skin contact, the amount of penetrating light energy was stable at similar to 20% (SEM +/- 0.6) of the initial optical output during 150 sec irradiation. However, irradiation with the superpulsed 904 nm, 60mW laser showed a linear increase in penetrating energy from 38% (SEM +/- 1.4) to 58% (SEM +/- 3.5) during 150 sec of exposure. The skin penetration abilities were significantly different (p < 0.01) between the two lasers at all measured time points. Conclusions: LLLT irradiation through rat skin leaves sufficient subdermal light energy to influence pathological processes and tissue repair. The finding that superpulsed 904nm LLLT light energy penetrates 2-3 easier through the rat skin barrier than 810nm continuous wave LLLT, corresponds well with results of LLLT dose analyses in systematic reviews of LLLT in musculoskeletal disorders. This may explain why the differentiation between these laser types has been needed in the clinical dosage recommendations of World Association for Laser Therapy.
Resumo:
The established communication skills training (CST) curriculum consists of continuous education, frequent practice with real patients, supervision and feedback from medical teachers. The limitation of this curriculum is that students have to directly apply the theoretical basis they are provided with to real patients. To improve the existing CST curriculum a CST module involving simulated patients was introduced in order to develop more complex communication skills.
Resumo:
Typically, statistical learning is investigated by testing the acquisition of specific items or forming general rules. As implicit sequence learning also involves the extraction of regularities from the environment, it can also be considered as an instance of statistical learning. In the present study, a Serial Reaction Time Task was used to test whether the continuous versus interleaved repetition of a sequence affects implicit learning despite the equal exposure to the sequences. The results revealed a sequence learning advantage for the continuous repetition condition compared to the interleaved condition. This suggests that by repetition, additional sequence information was extracted although the exposure to the sequences was identical as in the interleaved condition. The results are discussed in terms of similarities and potential differences between typical statistical learning paradigms and sequence learning.
Resumo:
Measurements of the natural background radiation have been made at numerous places throughout the world. Very little work in this field has been done in developing countries. In Mexico the natural radiation to which the population is exposed has not been assessed. This dissertation represents a pioneer study in this environmental area. The radiation exposure which occupants within buildings receive as a result of naturally occurring radionuclides present in construction materials is the principal focus.^ Data were collected between August 1979 and November 1980. Continuous monitoring was done with TLDs placed on site for periods of 3 to 6 months. The instrumentation used for "real-time" measurements was a portable NaI (Tl) scintillation detector. In addition, radiometric measurements were performed on construction materials commonly used in Mexican homes.^ Based on TLD readings taken within 75 dwellings, the typical indoor exposure for a resident of the study area is 9.2 (mu)Rh('-1). The average reading of the 152 indoor scintillometer surveys was 9.5 (mu)Rh('-1), the outdoor reading 7.5 (mu)Rh('-1). Results of one-way and multi-way analyses of the exposure data to determine the effect due to building materials type, geologic subsoil, age of dwelling, and elevation are also presented. The results of 152 indoor scintillometer surveys are described. ^
Resumo:
On-orbit exposures can come from numerous factors related to the space environment as evidenced by almost 50 years of environmental samples collected for water analysis, air analysis, radiation analysis, and physiologic parameters. For astronauts and spaceflight participants the occupational exposures can be very different from those experienced by workers performing similar tasks in workplaces on Earth, because the duration of the exposure could be continuous for very long orbital, and eventually interplanetary, missions. The establishment of long-term exposure standards is vital to controlling the quality of the spacecraft environment over long periods. NASA often needs to update and revise its prior exposure standards (Spacecrafts Maximum Allowable Concentrations (SMACs)). Traditional standards-setting processes are often lengthy, so a more rapid method to review and establish standards would be a substantial advancement in this area. This project investigates use of the Delphi method for this purpose. ^ In order to achieve the objectives of this study a modified Delphi methodology was tested in three trials executed by doctoral students and a panel of experts in disciplines related to occupational safety and health. During each test/trial modifications were made to the methodology. Prior to submission of the Delphi Questionnaire to the panel of experts a pilot study/trial was conducted using five doctoral students with the goals of testing and adjusting the Delphi questionnaire to improve comprehension, work out any procedural issues and evaluate the effectiveness of the questionnaire in drawing the desired responses. The remainder of the study consisted of two trials of the Modified Delphi process using 6 chemicals that currently have the potential of causing occupational exposures to NASA astronauts or spaceflight participants. To assist in setting Occupational Exposure Limits (OEL), the expert panel was established consisting of experts from academia, government and industry. Evidence was collected and used to create close-ended questionnaires which were submitted to the Delphi panel of experts for the establishment of OEL values for three chemicals from the list of six originally selected (trial 1). Once the first Delphi trial was completed, adjustments were made to the Delphi questionnaires and the process above was repeated with the remaining 3 chemicals (trial 2). ^ Results indicate that experience in occupational safety and health and with OEL methodologies can have a positive effect in minimizing the time experts take in completing this process. Based on the results of the questionnaires and comparison of the results with the SMAC already established by NASA, we conclude that use of the Delphi methodology is appropriate for use in the decision-making process for the selection of OELs.^