994 resultados para Conjugated-order differintegrals
Resumo:
A new model for correlated electrons is presented which is integrable in one-dimension. The symmetry algebra of the model is the Lie superalgebra gl(2\1) which depends on a continuous free parameter. This symmetry algebra contains the eta pairing algebra as a subalgebra which is used to show that the model exhibits Off-Diagonal Long-Range Order in any number of dimensions.
Resumo:
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We present a new integrable model for correlated electrons which is based on so(5) symmetry. By using an eta-pairing realization we construct eigenstates of the Hamiltonian with off-diagonal long-range order. It is also shown that these states lie in the ground state sector. We exactly solve the model on a one-dimensional lattice by the Bethe ansatz.
Resumo:
In this paper, the minimum-order stable recursive filter design problem is proposed and investigated. This problem is playing an important role in pipeline implementation sin signal processing. Here, the existence of a high-order stable recursive filter is proved theoretically, in which the upper bound for the highest order of stable filters is given. Then the minimum-order stable linear predictor is obtained via solving an optimization problem. In this paper, the popular genetic algorithm approach is adopted since it is a heuristic probabilistic optimization technique and has been widely used in engineering designs. Finally, an illustrative example is sued to show the effectiveness of the proposed algorithm.
Resumo:
Mating order can have important consequences for the fertilization success of males whose ejaculates compete to fertilize a clutch of eggs. Despite an excellent body of literature on mating-order effects in many animals, they have rarely been considered in marine free-spawning invertebrates, where both sexes release gametes into the water column. In this study, we show that in such organisms, mating order can have profound repercussions for male reproductive success. Using in vitro fertilization for two species of sea urchin we found that the 'fertilization history' of a clutch of eggs strongly influenced the size distribution of unfertilized eggs, and consequently the likelihood that they will be fertilized. Males that had first access to a batch of eggs enjoyed elevated fertilization success because they had privileged access to the largest and therefore most readily fertilizable eggs within a clutch. By contrast, when a male's sperm were exposed to a batch of unfertilized eggs left over from a previous mating event, fertilization rates were reduced, owing to smaller eggs remaining in egg clutches previously exposed to sperm. Because of this size-dependent fertilization, the fertilization history of eggs also strongly influenced the size distribution of offspring, with first-spawning males producing larger, and therefore fitter, offspring. These findings suggest that when there is variation in egg size, mating order will influence not only the quantity but also the quality of offspring sired by competing males.
Resumo:
We report a simple one pot process for the preparation of lead sulfide (PbS) nanocrystals in the conjugated polymer poly (2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV), and we demonstrate electronic coupling between the two components.
Resumo:
In this work we study the existence and regularity of mild solutions for a damped second order abstract functional differential equation with impulses. The results are obtained using the cosine function theory and fixed point criterions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We establish the existence of mild solutions for a class of impulsive second-order partial neutral functional differential equations with infinite delay in a Banach space. (C) 2009 Published by Elsevier Ltd
Resumo:
This work is concerned with implicit second order abstract differential equations with nonlocal conditions. Assuming that the involved operators satisfy sonic compactness properties, we establish the existence of local mild solutions, the existence of global mild solutions and the existence of asymptotically almost periodic solutions.
Resumo:
In this paper we study the approximate controllability of control systems with states and controls in Hilbert spaces, and described by a second-order semilinear abstract functional differential equation with infinite delay. Initially we establish a characterization for the approximate controllability of a second-order abstract linear system and, in the last section, we compare the approximate controllability of a semilinear abstract functional system with the approximate controllability of the associated linear system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We establish existence of mild solutions for a class of abstract second-order partial neutral functional differential equations with unbounded delay in a Banach space.