882 resultados para Condition indicator
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Project diagnostics : assessing the condition of projects and identifying poor health combing forces
Resumo:
In many cases, construction projects do not achieve the objectives that the project participants set for them. If participants could better understand how their project is performing overall, at various stages of its delivery, then the opportunities to achieve project success would almost certainly be greater. This paper documents a method of assessing the status of a project, at a point in its design or construction phase, or after completion. The status is assessed in terms of up to seven (7) key success factors. Any evidence of less than adequate performance in these performance areas is scrutinised to seek out the root causes of why this situation is happening. Using these identified root causes of under performance, general suggestions can then be made as to how to return the project to good health. A software package that assists in assessing the status of the project has been developed. The package is currently being calibrated before commercial release.
Resumo:
The highway express freight transportation (HEFT) is a new transportation organization form separated from the common freight transportation with economic development and incessant adjustment of highway transportation structure in China. At present, the phenomenon of inadaptability still exists in the HEFT system of China, from foundation structure like highways, parking lots and stations to transportation equipments and transportation organizing. In order to develop the HEFT system more rationally and effectively, we should start with the structure of the system, conform the resources existing, and consummate the freight transport system. In due course, relevant policies and measures to supervise, lead and support are necessary and important. This paper analyzes the existing problems of HEFT system in our country, based on its characteristics, development situation and adaptability, and presents the policy and measures of promoting and leading the development of the HEFT system.
Resumo:
A low-cost test bed was made from a modified heavy vehicle (HV) brake tester. By rotating a test HV’s wheel on an eccentric roller, a known vibration was imparted to the wheel under test. A control case for dampers in good condition was compared with two test cases of ineffective shock absorbers. Measurement of the forces at the bearings of the roller provided an indication of the HV wheel-forces. Where the level of serviceability of the shock absorbers varied, differences in wheel load provided a quality indicator corresponding to a change of damper characteristic. Conclusions regarding the levels of damper maintenance beyond which HV suspensions cause road damage and dynamic wheel forces at the threshold of tyre wear at which HV shock absorbers are normally replaced are presented.
Resumo:
This research is aimed at addressing problems in the field of asset management relating to risk analysis and decision making based on data from a Supervisory Control and Data Acquisition (SCADA) system. It is apparent that determining risk likelihood in risk analysis is difficult, especially when historical information is unreliable. This relates to a problem in SCADA data analysis because of nested data. A further problem is in providing beneficial information from a SCADA system to a managerial level information system (e.g. Enterprise Resource Planning/ERP). A Hierarchical Model is developed to address the problems. The model is composed of three different Analyses: Hierarchical Analysis, Failure Mode and Effect Analysis, and Interdependence Analysis. The significant contributions from the model include: (a) a new risk analysis model, namely an Interdependence Risk Analysis Model which does not rely on the existence of historical information because it utilises Interdependence Relationships to determine the risk likelihood, (b) improvement of the SCADA data analysis problem by addressing the nested data problem through the Hierarchical Analysis, and (c) presentation of a framework to provide beneficial information from SCADA systems to ERP systems. The case study of a Water Treatment Plant is utilised for model validation.
Resumo:
Physiological responses to environmental stress are increasingly well studied in scleractinian corals. This work reports a new stress-related skeletal structure we term clypeotheca. Clypeotheca was observed in several livecollected common reef-building coral genera and a two to three kya subfossil specimen from Heron Reef, Great Barrier Reef and consists of an epitheca-like skeletal wall that seals over the surface of parts of the corallum in areas of stress or damage. It appears to form from a coordinated process wherein neighboring polyps and adjoining coenosarc seal themselves off from the surrounding environment as they contract and die. Clypeotheca forms from inward skeletal centripetal growth at the edges of corallites and by the merging of flange-like outgrowths that surround individual spines over the surface of the coenosteum. Microstructurally, the merged flanges are similar to upsidedown dissepiments and true epitheca. Clypeotheca is interpreted primarily as a response to stress that may help protect the colony from invasion of unhealthy tissues by parasites or disease by retracting tissues in areas that have become unhealthy for the polyps. Identification of skeletal responses of corals to environmental stress may enable the frequency of certain types of environmental stress to be documented in past environments. Such data may be important for understanding the nature of reef dynamics through intervals of climate change and for monitoring the effects of possible anthropogenic stress in modern coral reef habitats.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
Modern machines are complex and often required to operate long hours to achieve production targets. The ability to detect symptoms of failure, hence, forecasting the remaining useful life of the machine is vital to prevent catastrophic failures. This is essential to reducing maintenance cost, operation downtime and safety hazard. Recent advances in condition monitoring technologies have given rise to a number of prognosis models that attempt to forecast machinery health based on either condition data or reliability data. In practice, failure condition trending data are seldom kept by industries and data that ended with a suspension are sometimes treated as failure data. This paper presents a novel approach of incorporating historical failure data and suspended condition trending data in the prognostic model. The proposed model consists of a FFNN whose training targets are asset survival probabilities estimated using a variation of Kaplan-Meier estimator and degradation-based failure PDF estimator. The output survival probabilities collectively form an estimated survival curve. The viability of the model was tested using a set of industry vibration data.