873 resultados para Computer Aided Engineering and Design
Resumo:
Commercial computer-aided design systems support the geometric definition of product, but they lack utilities to support initial design stages. Typical tasks such as customer need capture, functional requirement formalization, or design parameter definition are conducted in applications that, for instance, support ?quality function deployment? and ?failure modes and effects analysis? techniques. Such applications are noninteroperable with the computer-aided design systems, leading to discontinuous design information flows. This study addresses this issue and proposes a method to enhance the integration of design information generated in the early design stages into a commercial computer-aided design system. To demonstrate the feasibility of the approach adopted, a prototype application was developed and two case studies were executed.
Resumo:
Thesis (M.S.)--University of Illinois.
Resumo:
Advances in both computer technology and the necessary mathematical models capable of capturing the geometry of arbitarily shaped objects has led to the development in this thesis of a surface generation package called 'IBSCURF' aimed at providing a more economically viable solution to free-form surface manufacture. A suit of computer programs written in FORTRAN 77 has been developed to provide computer aids for every aspect of work in designing and machining free-form surfaces. A vector-valued parametric method was used for shape description and a lofting technique employed for the construction of the surface. The development of the package 'IBSCURF' consists of two phases. The first deals with CAD. The design process commences in defining the cross-sections which are represented by uniform B-spline curves as approximations to give polygons. The order of the curve and the position and number of the polygon vertices can be used as parameters for the modification to achieve the required curves. When the definitions of the sectional curves is complete, the surface is interpolated over them by cubic cardinal splines. To use the CAD function of the package to design a mould for a plastic handle, a mathematical model was developed. To facilitate the integration of design and machining using the mathematical representation of the surface, the second phase of the package is concerned with CAM which enables the generation of tool offset positions for ball-nosed cutters and a general post-processor has been developed which automatically generates NC tape programs for any CNC milling machine. The two phases of these programs have been successfully implemented, as a CAD/CAM package for free-form surfaces on the VAX 11/750 super-minicomputer with graphics facilities for displaying drawings interactively on the terminal screen. The development of this package has been beneficial in all aspects of design and machining of free form surfaces.
Resumo:
The work reported in this thesis is concerned with the improvement and expansion of the assistance given to the designer by the computer in the design of cold formed sections. The main contributions have been in four areas, which have consequently led to the fifth, the development of a methodology to optimise designs. This methodology can be considered an `Expert Design System' for cold formed sections. A different method of determining section properties of profiles was introduced, using the properties of line and circular elements. Graphics were introduced to show the outline of the profile on screen. The analysis of beam loading has been expanded to beam loading conditions where the number of supports, point loads, and uniform distributive loads can be specified by the designer. The profile can then be checked for suitability for the specified type of loading. Artificial Intelligence concepts have been introduced to give the designer decision support from the computer, in combination with the computer aided design facilities. The more complex decision support was adopted through the use of production rules. All the support was based on the British standards. A method has been introduced, by which the appropriate use of stiffeners can be determined and consequently designed by the designer. Finally, the methodology by which the designer is given assistance from the computer, without constraining the designer, was developed. This methodology gives advice to the designer on possible methods of improving the design, but allows the designer to reject that option, and analyse the profile accordingly. The methodology enables optimisation to be achieved by the designer, designing variety of profiles for a particular loading, and determining which one is best suited.
Resumo:
Cold roll forming of thin-walled sections is a very useful process in the sheet metal industry. However, the conventional method for the design and manufacture of form-rolls, the special tooling used in the cold roll forming process, is a very time consuming and skill demanding exercise. This thesis describes the establishment of a stand-alone minicomputer based CAD/CAM system for assisting the design and manufacture of form-rolls. The work was undertaken in collaboration with a leading manufacturer of thin-walled sections. A package of computer programs have been developed to provide computer aids for every aspect of work in form-roll design and manufacture. The programs have been successfully implemented, as an integrated CAD/CAM software system, on the ICL PERQ minicomputer with graphics facilities. Thus, the developed CAD/CAM system is a single-user workstation, with software facilities to help the user to perform the conventional roll design activities including the design of the finished section, the flower pattern, and the form-rolls. A roll editor program can then be used to modify, if required, the computer generated roll profiles. As far as manufacturing is concerned, a special-purpose roll machining program and postprocessor can be used in conjunction to generate the NC control part-programs for the production of form-rolls by NC turning. Graphics facilities have been incorporated into the CAD/CAM software programs to display drawings interactively on the computer screen throughout all stages of execution of the CAD/CAM software. It has been found that computerisation can shorten the lead time in all activities dealing with the design and manufacture of form-rolls, and small or medium size manufacturing companies can gain benefits from the CAD/CM! technology by developing, according to its own specification, a tailor-made CAD/CAM software system on a low cost minicomputer.
Resumo:
The work presented in this thesis falls into three main categories: The design and synthesis of potential anti-tuberculosis drugs targeting a mycobacterial esterase and the enzyme dUTPase; synthesis and anti-microbial SAR studies on a set of carboxamidrazones; synthesis and anti-microbial SAR studies on a set of thiosem icarbazones.
Resumo:
Abstract not available
Resumo:
Phospholipases A(2) (PLA(2)) are enzymes commonly found in snake venoms from Viperidae and Elaphidae families, which are major components thereof. Many plants are used in traditional medicine its active agents against various effects induced by snakebite. This article presents the PLA(2) BthTX-I structure prediction based on homology modeling. In addition, we have performed virtual screening in a large database yielding a set of potential bioactive inhibitors. A flexible docking program was used to investigate the interactions between the receptor and the new ligands. We have performed molecular interaction fields (MIFs) calculations with the phospholipase model. Results confirm the important role of Lys49 for binding ligands and suggest three additional residues as well. We have proposed a theoretically nontoxic, drug-like, and potential novel BthTX-I inhibitor. These calculations have been used to guide the design of novel phospholipase inhibitors as potential lead compounds that may be optimized for future treatment of snakebite victims as well as other human diseases in which PLA(2) enzymes are involved.
Resumo:
In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The aim of this research was to assess the dimensional accuracy of orbital prostheses based on reversed images generated by computer-aided design/computer-assisted manufacturing (CAD/CAM) using computed tomography (CT) scans. Materials and Methods: CT scans of the faces of 15 adults, men and women older than 25 years of age not bearing any congenital or acquired craniofacial defects, were processed using CAD software to produce 30 reversed three-dimensional models of the orbital region. These models were then processed using the CAM system by means of selective laser sintering to generate surface prototypes of the volunteers` orbital regions. Two moulage impressions of the faces of each volunteer were taken to manufacture 15 pairs of casts. Orbital defects were created on the right or left side of each cast. The surface prototypes were adapted to the casts and then flasked to fabricate silicone prostheses. The establishment of anthropometric landmarks on the orbital region and facial midline allowed for the data collection of 31 linear measurements, used to assess the dimensional accuracy of the orbital prostheses and their location on the face. Results: The comparative analyses of the linear measurements taken from the orbital prostheses and the opposite sides that originated the surface prototypes demonstrated that the orbital prostheses presented similar vertical, transversal, and oblique dimensions, as well as similar depth. There was no transverse or oblique displacement of the prostheses. Conclusion: From a clinical perspective, the small differences observed after analyzing all 31 linear measurements did not indicate facial asymmetry. The dimensional accuracy of the orbital prostheses suggested that the CAD/CAM system assessed herein may be applicable for clinical purposes. Int J Prosthodont 2010;23:271-276.
Resumo:
Virtual screening is a central technique in drug discovery today. Millions of molecules can be tested in silico with the aim to only select the most promising and test them experimentally. The topic of this thesis is ligand-based virtual screening tools which take existing active molecules as starting point for finding new drug candidates. One goal of this thesis was to build a model that gives the probability that two molecules are biologically similar as function of one or more chemical similarity scores. Another important goal was to evaluate how well different ligand-based virtual screening tools are able to distinguish active molecules from inactives. One more criterion set for the virtual screening tools was their applicability in scaffold-hopping, i.e. finding new active chemotypes. In the first part of the work, a link was defined between the abstract chemical similarity score given by a screening tool and the probability that the two molecules are biologically similar. These results help to decide objectively which virtual screening hits to test experimentally. The work also resulted in a new type of data fusion method when using two or more tools. In the second part, five ligand-based virtual screening tools were evaluated and their performance was found to be generally poor. Three reasons for this were proposed: false negatives in the benchmark sets, active molecules that do not share the binding mode, and activity cliffs. In the third part of the study, a novel visualization and quantification method is presented for evaluation of the scaffold-hopping ability of virtual screening tools.