975 resultados para Collaborative Content
Resumo:
Cultural content on the Web is available in various domains (cultural objects, datasets, geospatial data, moving images, scholarly texts and visual resources), concerns various topics, is written in different languages, targeted to both laymen and experts, and provided by different communities (libraries, archives museums and information industry) and individuals (Figure 1). The integration of information technologies and cultural heritage content on the Web is expected to have an impact on everyday life from the point of view of institutions, communities and individuals. In particular, collaborative environment scan recreate 3D navigable worlds that can offer new insights into our cultural heritage (Chan 2007). However, the main barrier is to find and relate cultural heritage information by end-users of cultural contents, as well as by organisations and communities managing and producing them. In this paper, we explore several visualisation techniques for supporting cultural interfaces, where the role of metadata is essential for supporting the search and communication among end-users (Figure 2). A conceptual framework was developed to integrate the data, purpose, technology, impact, and form components of a collaborative environment, Our preliminary results show that collaborative environments can help with cultural heritage information sharing and communication tasks because of the way in which they provide a visual context to end-users. They can be regarded as distributed virtual reality systems that offer graphically realised, potentially infinite, digital information landscapes. Moreover, collaborative environments also provide a new way of interaction between an end-user and a cultural heritage data set. Finally, the visualisation of metadata of a dataset plays an important role in helping end-users in their search for heritage contents on the Web.
Resumo:
Web development is currently driven by model-view-controller (MVC) frameworks. How has content management adapted to this scenario? This paper reviews content management features in Ruby on Rails framework and its most popular plug-ins. These features are distributed among the different layers of the MVC architecture
Resumo:
One of the advantages of social networks is the possibility to socialize and personalize the content created or shared by the users. In mobile social networks, where the devices have limited capabilities in terms of screen size and computing power, Multimedia Recommender Systems help to present the most relevant content to the users, depending on their tastes, relationships and profile. Previous recommender systems are not able to cope with the uncertainty of automated tagging and are knowledge domain dependant. In addition, the instantiation of a recommender in this domain should cope with problems arising from the collaborative filtering inherent nature (cold start, banana problem, large number of users to run, etc.). The solution presented in this paper addresses the abovementioned problems by proposing a hybrid image recommender system, which combines collaborative filtering (social techniques) with content-based techniques, leaving the user the liberty to give these processes a personal weight. It takes into account aesthetics and the formal characteristics of the images to overcome the problems of current techniques, improving the performance of existing systems to create a mobile social networks recommender with a high degree of adaptation to any kind of user.
Resumo:
Social software tools have become an integral part of students? personal lives and their primary communication medium. Likewise, these tools are increasingly entering the enterprise world (within the recent trend known as Enterprise 2.0) and becoming a part of everyday work routines. Aiming to keep the pace with the job requirements and also to position learning as an integral part of students? life, the field of education is challenged to embrace social software. Personal Learning Environments (PLEs) emerged as a concept that makes use of social software to facilitate collaboration, knowledge sharing, group formation around common interests, active participation and reflective thinking in online learning settings. Furthermore, social software allows for establishing and maintaining one?s presence in the online world. By being aware of a student's online presence, a PLE is better able to personalize the learning settings, e.g., through recommendation of content to use or people to collaborate with. Aiming to explore the potentials of online presence for the provision of recommendations in PLEs, in the scope of the OP4L project, we have develop a software solution that is based on a synergy of Semantic Web technologies, online presence and socially-oriented learning theories. In this paper we present the current results of this research work.
Resumo:
In this paper we provide a method that allows the visualization of similarity relationships present between items of collaborative filtering recommender systems, as well as the relative importance of each of these. The objective is to offer visual representations of the recommender system?s set of items and of their relationships; these graphs show us where the most representative information can be found and which items are rated in a more similar way by the recommender system?s community of users. The visual representations achieved take the shape of phylogenetic trees, displaying the numerical similarity and the reliability between each pair of items considered to be similar. As a case study we provide the results obtained using the public database Movielens 1M, which contains 3900 movies.
Resumo:
Increased global uptake of entertainment gaming has the potential to lead to high expectations of engagement and interactivity from users of technology-enhanced learning environments. Blended approaches to implementing game-based learning as part of distance or technology-enhanced education have led to demonstrations of the benefits they might bring, allowing learners to interact with immersive technologies as part of a broader, structured learning experience. In this article, we explore how the integration of a serious game can be extended to a learning content management system (LCMS) to support a blended and holistic approach, described as an 'intuitive-guided' method. Through a case study within the EU-Funded Adaptive Learning via Intuitive/Interactive, Collaborative and Emotional Systems (ALICE) project, a technical integration of a gaming engine with a proprietary LCMS is demonstrated, building upon earlier work and demonstrating how this approach might be realized. In particular, how this method can support an intuitive-guided approach to learning is considered, whereby the learner is given the potential to explore a non-linear environment whilst scaffolding and blending provide guidance ensuring targeted learning objectives are met. Through an evaluation of the developed prototype with 32 students aged 14-16 across two Italian schools, a varied response from learners is observed, coupled with a positive reception from tutors. The study demonstrates that challenges remain in providing high-fidelity content in a classroom environment, particularly as an increasing gap in technology availability between leisure and school times emerges.
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.
Resumo:
Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.