976 resultados para Co2
Resumo:
A 16-µm CO2-N2 downstream-mixing gasdynamic laser, where a cold CO2 stream is mixed with a vibrationally excited N2 stream at the exit of the nozzle, is studied theoretically. The flow field is analyzed using a two-dimensional, unsteady, laminar and viscous flow model including appropriate finite-rate vibrational kinetic equations. The analysis showed that local small-signal gain up to 21.75 m−1 can be obtained for a N2 reservoir temperature of 2000 K and a velocity ratio of 1:1 between the CO2 and N2 mixing streams. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
Phase diagrams for Tm2O3-H2O-CO2. Yb2O3-H2O-CO2 and Lu2O3-H2O-CO2 systems at 650 and 1300 bars have been investigated in the temperature range of 100–800°C. The phase diagrams are far more complex than those for the lighter lanthanides. The stable phases are Ln(OH)3, Ln2(CO3)3.3H2O (tengerite phase), orthorhombic-LnOHCO3, hexagonal-Ln2O2CO3. LnOOH and cubic-Ln2O3. Ln(OH)3 is stable only at very low partial pressures of CO2. Additional phases stabilised are Ln2O(OH)2CO3and Ln6(OH)4(CO3)7 which are absent in lighter lanthanide systems. Other phases, isolated in the presence of minor alkali impurities, are Ln6O2(OH)8(CO3)3. Ln4(OH)6(CO3)3 and Ln12O7(OH)10,(CO3)6. The chemical equilibria prevailing in these hydrothermal systems may be best explained on the basis of the four-fold classification of lanthanides.
Resumo:
We tested the effect of near-future CO2 levels (a parts per thousand 490, 570, 700, and 960 mu atm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 mu atm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 mu atm CO2 (control). In contrast, juveniles reared at 700 and 960 mu atm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 mu atm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO(2) remains below 600 mu atm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator-prey interactions and commercial fisheries.
Resumo:
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol−1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol−1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust-infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.
Resumo:
Changes in energy-related CO2 emissions aggregate intensity, total CO2 emissions and per-capita CO2 emissions in Australia are decomposed by using a Logarithmic Mean Divisia Index (LMDI) method for the period 1978-2010. Results indicate improvements in energy efficiency played a dominant role in the measured 17% reduction in CO2 emissions aggregate intensity in Australia over the period. Structural changes in the economy, such as changes in the relative importance of the services sector vis-Ã -vis manufacturing, have also played a major role in achieving this outcome. Results also suggest that, without these mitigating factors, income per capita and population effects could well have produced an increase in total emissions of more than 50% higher than actually occurred over the period. Perhaps most starkly, the results indicate that, without these mitigating factors, the growth in CO2 emissions per capita could have been over 150% higher than actually observed. Notwithstanding this, the study suggests that, for Australia to meet its Copenhagen commitment, the relative average per annum effectiveness of these mitigating factors during 2010-2020 probably needs to be almost three times what it was in the 2005-2010 period-a very daunting challenge indeed for Australia's policymakers.
Resumo:
This paper examines the asymmetry of changes in CO<inf>2</inf> emissions over business cycle recessions and expansions using yearly data from 1949 and monthly data from 1973 for the United States (US). In addition, decomposition analysis is applied to investigate the relative roles of various proximate contributing factors to observed changes in total and per capita CO<inf>2</inf> emissions and emissions intensity, over business cycle phases. The results suggest, inter alia, that aggregate emissions and emissions intensity reduce much faster in contractions than they increase in expansions. In addition, unlike the three previous expansions, in the most recent post-GFC US expansion, emissions per capita have continued to decline, and at a rate very similar to the rate of reduction in preceding contractions. This suggests the real possibility that the most recent contraction may have had an ongoing impact on the path of per capita emissions well beyond the immediate impact experienced during the contraction itself.
Resumo:
This study investigates the relationship between per capita carbon dioxide (CO2) emissions and per capita GDP in Australia, while controlling for technological state as measured by multifactor productivity and export of black coal. Although technological progress seems to play a critical role in achieving long term goals of CO2 reduction and economic growth, empirical studies have often considered time trend to proxy technological change. However, as discoveries and diffusion of new technologies may not progress smoothly with time, the assumption of a deterministic technological progress may be incorrect in the long run. The use of multifactor productivity as a measure of technological state, therefore, overcomes the limitations and provides practical policy directions. This study uses recently developed bound-testing approach, which is complemented by Johansen- Juselius maximum likelihood approach and a reasonably large sample size to investigate the cointegration relationship. Both of the techniques suggest that cointegration relationship exists among the variables. The long-run and short-run coefficients of CO2 emissions function is estimated using ARDL approach. The empirical findings in the study show evidence of the existence of Environmental Kuznets Curve type relationship for per capita CO2 emissions in the Australian context. The technology as measured by the multifactor productivity, however, is not found as an influencing variable in emissionsincome trajectory.
Resumo:
A theory for the emission of X-rays from a high density gaseous plasma interacting with CO2 laser is given. It predicts a sharp increase in the X-ray intensity for densities close to the critical.
Resumo:
Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi-one-dimensional nonreacting flow in the supersonic nozzle of CO2-N2-H2O and CO2-N2-He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function NS for pure N2 gas, as is done in previous publications, the NS correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small-signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computed using these correlations. The present results are compared with the previous results and the main differences are discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
Abstract is not available.
Resumo:
Attention is given to the results of optimization studies with a 16-micron CO2-N2-H2 GDL employing two-dimensional wedge nozzles. The optimum value of the achievable gain reaches 12.7 percent/cm on the P(15) line for a 30:50:20 percent respective apportionment of the aforementioned gases. The corresponding optimum values for reservoir pressure and area ratio are computed as functions of reservoir temperature, and presented graphically.
Resumo:
The forest vegetation takes up atmospheric carbon dioxide (CO2) in photosynthesis. Part of the fixed carbon is released back into the atmosphere during plant respiration but a substantial part is stored as plant biomass, especially in the stems of trees. Carbon also accumulates in the soil as litter and via the roots. CO2 is released into the atmosphere from these carbon stocks in the decomposition of dead biomass. Carbon balance of a forest stand is the difference between the CO2 uptake and CO2 efflux. This study quantifies and analyses the dynamics of carbon balance and component CO2 fluxes in four Southern Finnish Scots pine stands that covered the typical economic rotation time of 80 years. The study was based on direct flux measurements with chambers and eddy covariance (EC), and modelling of component CO2 fluxes. The net CO2 exchange of the stand was partitioned into component fluxes: photosynthesis of trees and ground vegetation, respiration of tree foliage and stems, and CO2 efflux from the soil. The relationships between the component fluxes and the environmental factors (light, temperature, atmospheric CO2, air humidity and soil moisture) were studied with mathematical modelling. The annual CO2 balance varied from a source of about 400 g C/m2 at a recently clearcut site to net CO2 uptake of 200 300 g C/m2 in a middle-aged (40-year-old) and a mature (75-year-old) stand. A 12-year-old sapling site was at the turning point from source to a sink of CO2. In the middle-aged stand, photosynthetic production was dominated by trees. Under closed pine canopies, ground vegetation accounted for 10 20% of stand photosynthesis whereas at the open sites the proportion and also the absolute photosynthesis of ground vegetation was much higher. The aboveground respiration was dominated by tree foliage which accounted for one third of the ecosystem respiration. Rate of wood respiration was in the order of 10% of total ecosystem respiration. CO2 efflux from the soil dominated the ecosystem respiratory fluxes in all phases of stand development. Instantaneous and delayed responses to the environmental driving factors could predict well within-year variability in photosynthetic production: In the short term and during the growing season photosynthesis follows primarily light while the seasonal variation is more strongly connected to temperature. The temperature relationship of the annual cycle of photosynthesis was found to be almost equal in the southern boreal zone and at the timberline in the northern boreal zone. The respiratory fluxes showed instantaneous and seasonal temperature relationships but they could also be connected to photosynthesis at an annual timescale.
Resumo:
The solubilities of three chlorophenols, namely, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol, in supercritical carbon dioxide were determined at temperatures from (308 to 3 18) K in the pressure range of (8.8 to 15.6) MPa. The Solubilities were determined both in the absence of cosolvents and in the presence of two cosolvents, methanol and acetone. The solubilities (in the absence of cosolvents) in mole fraction of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol at 308 K were in the range of (0.0113 to 0.0215), (0.0312 to 0.0645), and (0.008 to 0.0173), respectively. The Solubilities of the chlorophenols followed the order 2,4-dichlorophenol & 4-chlorophenol & phenol & 2,4,6-trichlorophenol & pentachlorophenol. The solubility data were correlated with the Charstil model and with the Mendez-Santiago and Teja model. The overall deviation between the experimental data and the correlated results Was less than 6 % in averaged absolute relative deviation (AARD) for both of the models.