440 resultados para Clostridium Perfringens
Resumo:
Necrotizing enteritis (NE) of newborn piglets still represents an economical problem in Swiss pig breeding and production. The aim of our study was to identify risk factors for NE and evaluate the prevalence of C. perfringens with the toxingenes cpb and cpb2 in Swiss pig breeding farms. The prevalence of theses C. perfringens was investigated using fecal swabs followed by bacteriological culturing and genotyping. Close proximity to other breeding farms and large herd sizes were shown to predispose to NE. C. perfringens type C, carrying the genes cpa, cpb and cpb2 were frequently identified in herds with acute outbreaks of NE. Farms not affected by NE or those using prophylactic vaccination against NE were predominantly positive for C. perfringens type A strains with cpb2 and showed much lower prevalence of C. perfringens type C, compared to acutely affected herds. Our results demonstrate that C. perfringens type A strains with cpb2 are not associated with NE. Besides typical necropsy finding, only the identification of cpb can be used for the diagnosis of NE in affected herds.
Resumo:
Clostridium perfringens type C-induced enteritis necroticans is a rare but often fatal disease in humans. A consistent histopathological finding is an acute, deep necrosis of the small intestinal mucosa associated with acute vascular necrosis and massive haemorrhage in the lamina propria and submucosa. Retrospective immunohistochemical investigations of tissues from a diabetic adult who died of enteritis necroticans revealed endothelial localization of C. perfringens beta-toxin in small intestinal lesions. Our results indicate that vascular necrosis might be induced by a direct interaction between C. perfringens beta-toxin and endothelial cells and that targeted disruption of endothelial cells plays a role in the pathogenesis of enteritis necroticans.
Resumo:
Immunisation of sows using Clostridium perfringens type C toxoid vaccines is recommended to prevent necrotising enteritis (NE) on pig breeding farms. Absence of disease, however, oftentimes leads to the false assumption of pathogens being eradicated. The prevalence of C perfringens type C was determined by PCR in faecal samples of piglets and sows in three Swiss pig breeding farms two to four years after implementation of a vaccination programme following disease outbreaks. C perfringens type C could still be detected several years after an outbreak despite absence of NE. In-herd prevalence of the pathogens varied significantly between the farms and was also lower compared with a farm which experienced a recent outbreak. In conclusion, C perfringens type C can be detected on once-affected farms, even in the absence of NE for several years.
Resumo:
Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").
Resumo:
Fifty Clostridium perfringens strains were isolated from individual dogs with acute diarrhoea that were not given antibiotics. Toxin types and minimal inhibitory concentrations of 15 antibiotics were determined for each of them. All strains harboured the alpha-toxin gene, 12 of them had both the alpha- and entero-toxin gene and 5 had both the alpha- and beta2-toxin gene. Eighteen percent of the isolates showed resistance to tetracycline and 54 % showed decreased susceptibility to metronidazole which is one of the most frequently used antibiotics in the treatment of canine diarrhoea. Apart from that, all isolates were susceptible to the remaining antibiotics tested. These findings lead to the conclusion that despite a general susceptibility to antibiotics in C. perfringens, resistance is developing in isolates from dogs. Therefore, careful identification of the pathogenic agent and antibiotic susceptibility testing should be performed prior to therapy in order to minimise further selection of antibiotic resistance.
Resumo:
The cpb2 gene of beta2-toxigenic Clostridium perfringens isolated from horses, cattle, sheep, human and pigs was sequenced. The cpb2 gene of equine and other non-porcine isolates differed from porcine isolates by the absence of an adenine in a poly A tract immediately downstream of the start codon in all non-porcine C. perfringens strains. This deletion involved formation of a cryptic gene harbouring a premature stop codon after only nine amino acid codons, while the full beta2-toxin protein consists of 265 amino acids. Immunoblots carried out with antibodies directed against a recombinant beta2-toxin showed the absence of expression of the beta2-toxin in equine and the other non-porcine strains under standard culture conditions. However, treatment of C. perfringens with the aminoglycosides gentamicin or streptomycin was able to induce expression of the cpb2 gene in a representative equine strain of this group, presumably by frameshifting. The presence of the beta2-toxin was revealed by immunohistology in tissue samples of small and large intestine from horses with severe typhlocolitis that had been treated before with gentamicin. This result may explain the finding that antibiotic treatment of horses affected by beta2-toxigenic C. perfringens leads to a more accentuated and fatal progression of equine typhlocolitis. Clinical observations show a reduced appearance of strong typhlocolitis in horses with intestinal complications admitted to hospital care since the standard use of gentamicin has been abandoned. This is the first report on expression of a bacterial toxin gene by antibiotic-induced ribosomal frameshifting.
Resumo:
Beta toxin (CPB) is known to be an essential virulence factor in the development of lesions of Clostridium perfringens type C enteritis in different animal species. Its target cells and exact mechanism of toxicity have not yet been clearly defined. Here, we evaluate the suitability of a neonatal piglet jejunal loop model to investigate early lesions of C. perfringens type C enteritis. Immunohistochemically, CPB was detected at microvascular endothelial cells in intestinal villi during early and advanced stages of lesions induced by C. perfringens type C. This was first associated with capillary dilatation and subsequently with widespread hemorrhage in affected intestinal segments. CPB was, however, not demonstrated on intestinal epithelial cells. This indicates a tropism of CPB toward endothelial cells and suggests that CPB-induced endothelial damage plays an important role in the early stages of C. perfringens type C enteritis in pigs.
Resumo:
BACKGROUND: Clostridium perfringens type A food poisoning is caused by enterotoxigenic C. perfringens type A isolates that typically possess high spore heat-resistance. The molecular basis for C. perfringens spore heat-resistance remains unknown. In the current study, we investigated the role of small, acid-soluble spore proteins (SASPs) in heat-resistance of spores produced by C. perfringens food poisoning isolates. RESULTS: Our current study demonstrated the presence of all three SASP-encoding genes (ssp1, 2 and 3) in five surveyed C. perfringens clinical food poisoning isolates. beta-Glucuronidase assay showed that these ssp genes are expressed specifically during sporulation. Consistent with these expression results, our study also demonstrated the production of SASPs by C. perfringens food poisoning isolates. When the heat sensitivities of spores produced by a ssp3 knock-out mutant of a C. perfringens food poisoning isolate was compared with that of spores of the wild-type strain, spores of the ssp3 mutant were found to exhibit a lower decimal reduction value (D value) at 100 degrees C than exhibited by the spores of wild-type strain. This effect was restored by complementing the ssp3 mutant with a recombinant plasmid carrying wild-type ssp3, suggesting that the observed differences in D values between spores of wild-type versus ssp3 mutant was due to the specific inactivation of ssp3. Furthermore, our DNA protection assay demonstrated that C. perfringens SASPs can protect DNA from DNase I digestion. CONCLUSION: The results from our current study provide evidences that SASPs produced by C. perfringens food poisoning isolates play a role in protecting their spores from heat-damage, which is highly significant and relevant from a food safety perspective. Further detailed studies on mechanism of action of SASPs from C. perfringens should help in understanding the mechanism of protection of C. perfringens spores from heat-damage.
Resumo:
Fish collected from local landing centres and also from local markets were examined for the presence and enumeration of Clostridium perfringens. A medium described by Beerens et al. (1982) was used for the detection and enumeration of C. perfringens. C. perfringens occurs in low numbers in fishes compared to prawns. Proper handling of fishes after landing can reduce the chance of any public health hazard by C. perfringens.
Resumo:
Clostridial myositis is an acute, generally fatal toxemia that is considered to be rare in pet animals. The present report describes an unusual canine clostridial myositis that was diagnosed by a new multiplex-PCR (mPCR) designed for simultaneous identification of Clostridium sordellii, Clostridium septicum, Clostridium perfringens type A, Clostridium chauvoei, and Clostridium novyi type A. A ten-month-old male Rottweiler dog, that had displayed lameness and swelling of the left limb for 12 h, was admitted to a veterinary hospital. The animal was weak, dyspneic and hyperthermic, and a clinical examination indicated the presence of gas and edema in the limb. Despite emergency treatment, the animal died in only a few minutes. Samples of muscular tissue from the necrotic area were aseptically collected and plated onto defibrinated sheep blood agar (5%) in anaerobic conditions. Colonies suggestive of Clostridium spp. were submitted to testing by multiplex-PCR. Impression smears of the tissues, visualized with Gram and also with panoptic stains, revealed long rod-shaped organisms, and specimens also tested positive using the fluorescent antibody technique (FAT). The FAT and mPCR tests enabled a diagnosis of C. septicum myonecrosis in the dog. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Clostridium perfringens type C causes fatal necrotizing enteritis in different mammalian hosts, most commonly in newborn piglets. Human cases are rare, but the disease, also called pigbel, was endemic in the Highlands of Papua New Guinea. Lesions in piglets and humans are very similar and characterized by segmental necro-hemorrhagic enteritis in acute cases and fibrino-necrotizing enteritis in subacute cases. Histologically, deep mucosal necrosis accompanied by vascular thrombosis and necrosis was consistently reported in naturally affected pigs and humans. This suggests common pathogenetic mechanisms. Previous in vitro studies using primary porcine aortic endothelial cells suggested that beta-toxin (CPB) induced endothelial damage contributes to the pathogenesis of C. perfringens type C enteritis in pigs. In the present study we investigated toxic effects of CPB on cultured primary human macro- and microvascular endothelial cells. In vitro, these cells were highly sensitive to CPB and reacted with similar cytopathic and cytotoxic effects as porcine endothelial cells. Our results indicate that porcine and human cell culture based in vitro models represent valuable tools to investigate the pathogenesis of this bacterial disease in animals and humans.
Resumo:
The sequences of the 16S rRNA genes (rrs genes) of Clostridium chauvoei, the causative agent of blackleg in cattle, and the phenotypically related organism Clostridium septicum were determined. After amplification of 1,507-bp PCR fragments from the corresponding rrs genes, the sequences were determined in a single round of sequencing by using conserved region primers. A sequence similarity analysis of the sequences revealed the close phylogenetic relationship of C. chauvoei and C. septicum in Clostridium cluster I (M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994), which includes Clostridium carnis, Clostridium perfringens, Clostridium botulinum, and Clostridium tetani. We found that 99.3% of the nucleotides in the genes of C. chauvoei and C. septicum are identical.