66 resultados para Cinnamomum zeylanicum
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Natural products have been studied aiming to understand their biological properties. Thus, this study aimed to investigate the antimicrobial activity of twenty-seven essential oils (EOs) used in aromatherapy procedures, a natural therapy with great emphasis currently used against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa strains. The agar dilution method was carried out and minimal inhibitory concentration against 50% and 90% of strains (MIC50% and MIC90% values) were reported. The S.aureus strains were highly susceptible with MIC90% from 0.21mg/mL to black pepper (Piper nigrum) and tea tree (Melaleuca alternifolia) to 26.52mg/mL with copaiba (Copaifera officinalis) EO. Cinnamon (Cinnamomum cassia) and clove (Syzygium aromaticum) EOs were effective against E.coli (2.0mg/mL) while the S.aromaticum EO was against P.aeruginosa (8.29mg/mL). Thus, the higher susceptibility of Gram-positive bacteria when compared with Gram-negative strains was found, and a large variability in the potential antibacterial has also been observed.
Resumo:
The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aronzaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains.
Resumo:
Southern China, especially Yunnan, has undergone high tectonic activity caused by the uplift of Himalayan Mountains during the Neogene, which led to a fast changing palaeogeography. Previous study shows that Southern China has been influenced by the Asian Monsoon since at least the Early Miocene. However, it is yet not well understood how intense the Miocene monsoon system was. In the present study, 63 fossil floras of 16 localities from Southern China are compiled and evaluated for obtaining available information concerning floristic composition, stratigraphic age, sedimentology, etc. Based on such reliable information, selected mega- and micro-floras have been analysed with the coexistence approach to obtain quantitative palaeoclimate data. Visualization of climate results in maps shows a distinct spatial differentiation in Southern China during the Miocene. Higher seasonalities of temperature and precipitation occur in the north and south parts of Southern China, respectively. During the Miocene, most regions of Southern China and Europe were both warm and humid. Central Eurasia was likely to be an arid center, which gradually spread westward and eastward. Our data provide information about Miocene climate patterns in Southern China and about the evolution of these patterns throughout the Miocene, and is also crucial to unravel and understand the climatic signals of global cooling and tectonic uplift.
Resumo:
The Miocene Lincang leaf assemblage is used in this paper as proxy data to reconstruct the palaeoclimate of southwestern Yunnan (SW China) and the evolution of monsoon intensity. Three quantitative methods were chosen for this reconstruction, i.e. Leaf Margin Analysis (LMA), Climate Leaf Analysis Multivariate Program (CLAMP), and the Coexistence Approach (CA). These methods, however, yield inconsistent results, particularly for the precipitation, as also shown in European and other East Asian Cenozoic floras. The wide range of the reconstructed climatic parameters includes the Mean Annual Temperature (MAT) of 18.5-24.7 °C and the Mean Annual Precipitation (MAP) of 1213-3711 mm. Compared with the modern Lincang climate (MAT, 17.3 °C; MAP, 1178.7 mm), the Miocene climate is slightly warmer, wetter and has a higher temperature seasonality. A detailed comparison on the palaeoclimatic variables with the coeval Late Miocene Xiaolongtan flora from the eastern part of Yunnan allows us to investigate the development and interactions of both South Asian and East Asian monsoons during the Late Miocene in southwest China, now under strong influence of these monsoon systems. Our results suggest that the monsoon climate has already been established in southwest Yunnan during the Late Miocene. Furthermore, our results support that both Southeast Asian and East Asian monsoons co-occurred in Yunnan during the Late Miocene.
Resumo:
Neogene climates and vegetation history of western Yunnan are reconstructed on the basis of known fossil plants using the Coexistence Approach (CA) and Leaf Margin Analysis (LMA). Four Neogene leaf floras from Tengchong, Jianchuan and Eryuan in southwestern China are analyzed by the CA, and the paleoclimatic data of one Miocene carpoflora from Longling and three Pliocene palynofloras from Longling, Yangyi and Eryuan are used for comparison. The Miocene vegetation of the whole of West Yunnan is subtropical evergreen broad-leaved forest, and a similar mean annual precipitation is inferred for Tengchong, Longling and Jianchuan. However, by the Late Pliocene a large difference in vegetation occurred between the two slopes of Gaoligong Mountain, western Yunnan. The region of Tengchong retained a subtropical evergreen broad-leaved forest vegetation, whereas in Yangyi and Eryuan a vertical vegetation zonation had developed, which consists, in ascending order, of humid evergreen broad-leaved, needle and broad-leaved mixed evergreen, and coniferous forests. Distinctively, the Late Pliocene vegetational patterns of West Yunnan were already very similar to those of the present, and the Pliocene mean annual precipitation in Tengchong was markedly higher than that of Yangyi and Eryuan. Considering that the overall vegetation of West Yunnan and the precipitation at Yangyi and Eryuan have undergone no distinct change since the Late Pliocene, we conclude that the Hengduan Mountains on the northern boundary of West Yunnan must have arisen after the Miocene and approached their highest elevation before the Late Pliocene. Furthermore, the fact of the eastern portion of the Tibetan Plateau underwent a slight uplift after the Late Pliocene is also supported.