53 resultados para Cenp-e


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromatin-based epigenetic inheritance cooperates with cis-acting DNA sequence information to propagate gene expression states and chromosome architecture across cell division cycles. Histone proteins and their modifications are central components of epigenetic systems but how, and to what extent, they are propagated is a matter of continued debate. Centromeric nucleosomes, marked by the histone H3 variant CENP-A, are stable across mitotic divisions and are assembled in a locus specific and cell cycle controlled manner. The mechanism of inheritance of this unique chromatin domain has important implications for how general nucleosome transmission is controlled in space and time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-05

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review we provide a brief background on the cell cycle and then focus on two novel and emerging areas of cell cycle research that may prove to have significant relevance to the development of novel anticancer agents. In particular, we review the emerging evidence to suggest that histone deacetylase inhibitors may possess cancer cell-specific cytotoxicity due to their ability to target a novel G2/M checkpoint. We also review the recent literature supporting the proposition that inhibition of E2F activity in epithelial cancer cells may prove to be a useful differentiation therapy that operates via cell cycle-dependent and cell cycle-independent mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclin-dependent kinase 4 (CDK4)/cyclin D has a key role in regulating progression through late G(1) into S phase of the cell cycle. CDK4-cyclin D complexes then persist through the latter phases of the cell cycle, although little is known about their potential roles. We have developed small molecule inhibitors that are highly selective for CDK4 and have used these to define a role for CDK4-cyclin D in G(2) phase. The addition of the CDK4 inhibitor or small interfering RNA knockdown of cyclin D3, the cyclin D partner, delayed progression through G(2) phase and mitosis. The G(2) phase delay was independent of ATM/ATR and p38 MAPK but associated with elevated Wee1. The mitotic delay was because of failure of chromosomes to migrate to the metaphase plate. However, cells eventually exited mitosis, with a resultant increase in cells with multiple or micronuclei. Inhibiting CDK4 delayed the expression of the chromosomal passenger proteins survivin and borealin, although this was unlikely to account for the mitotic phenotype. These data provide evidence for a novel function for CDK4-cyclin D3 activity in S and G(2) phase that is critical for G(2)/M progression and the fidelity of mitosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centromeres are essential chromosomal loci at which kinetochore formation occurs for spindle fiber attachment during mitosis and meiosis, guiding proper segregation of chromosomes. In humans, centromeres are located at large arrays of alpha satellite DNA, contributing to but not defining centromere function. The histone variant CENP-A assembles at alpha satellite DNA, epigenetically defining the centromere. CENP-A containing chromatin exists as an essential domain composed of blocks of CENP-A nucleosomes interspersed with blocks of H3 nucleosomes, and is surrounded by pericentromeric heterochromatin. In order to maintain genomic stability, the CENP-A domain is propagated epigenetically over each cell division; disruption of propagation is associated with chromosome instabilities such as aneuploidy, found in birth defects and in cancer.

The CENP-A chromatin domain occupies 30-45% of the alpha satellite array, varying in genomic distance according to the underlying array size. However, the molecular mechanisms that control assembly and organization of CENP-A chromatin within its genomic context remain unclear. The domain may shift, expand, or contract, as CENP-A is loaded and dispersed each cell cycle. We hypothesized that in order to maintain genome stability, the centromere is inherited as static chromatin domains, maintaining size and position within the pericentric heterochromatin. Utilizing stretched chromatin fibers, I found that CENP-A chromatin is limited to a sub-region of the alpha satellite array that is fixed in size and location through the cell cycle and across populations.

The average amount of CENP-A at human centromeres is largely consistent, implying that the variation in size of CENP-A domains reflects variations in the number of CENP-A subdomains and/or the density of CENP-A nucleosomes. Multi-color nascent protein labeling experiments were utilized to examine the distribution and incorporation of distinct pools of CENP-A over several cell cycles. I found that in each cell cycle there is independent CENP-A distribution, occurring equally between sister centromeres across all chromosomes, in similar quantities. Furthermore, centromere inheritance is achieved through specific placement of CENP-A, following an oscillating pattern that fixes the location and size of the CENP-A domain. These results suggest that spatial and temporal dynamics of CENP-A are important for maintaining centromere and genome stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Oncobiologia - Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este artigo propõe  apresentar uma reflexão sobre o Projeto de Iniciação Científica vinculado ao Departamento de Letras da UFOP, realizado no ano de 2016, que objetivou investigar o ensino da Língua Portuguesa (LP) como segunda língua, a partir do uso da Língua de Sinais (LS) como base comunicativa, em uma escola da Rede Municipal de Ensino da cidade de Mariana-MG, que possuía 2 (dois) alunos surdos incluídos nas séries iniciais do ensino fundamental. Assim, foi determinante ao projeto que todo o processo de ensino-aprendizagem da LP para surdos fosse realizado, inicialmente, com o ensino da LS e, a partir daí, construíssem possibilidades quanto ao uso da LP escrita. Intencionou-se um trabalho diferenciado ao propor sua realização em sala de aula e com a participação de crianças surdas. O ensino-aprendizagem se desenvolveu apoiado sobre a Libras e sem a intermediação do intérprete. A metodologia adotada foi de cunho etnográfico, nesse sentido, buscou-se  triangular os dados, o método e a teoria.  Acompanhando o processo dinâmico que envolveu a abordagem, concluiu-se que o constante apoio de recursos visuais são ferramentas fundamentais que irão conferir  embasamento ao processo de desenvolvimento de aquisição da LS e, consequentemente, o despertar da consciência para compreender e assimilar os processos de aquisição da LP, de tal  forma a contribuir para um aprendizado significativo.