982 resultados para Cavity Photon Lifetimes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations for mixed convection of micropolar fluid in an open ended arc-shape cavity have been carried out in this study. Computation is performed using the Alternate Direct Implicit (ADI) method together with the Successive Over Relaxation (SOR) technique for the solution of governing partial differential equations. The flow phenomenon is examined for a range of values of Rayleigh number, 102 ≤ Ra ≤ 106, Prandtl number, 7 ≤ Pr ≤ 50, and Reynolds number, 10 ≤ Re ≤ 100. The study is mainly focused on how the micropolar fluid parameters affect the fluid properties in the flow domain. It was found that despite the reduction of flow in the core region, the heat transfer rate increases, whereas the skin friction and microrotation decrease with the increase in the vortex viscosity parameter, Δ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab μMLC attachment for square field sizes down to 6 mm × 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3 % dose reduction relative to a Monte Carlo simulation with no air gap. A hypothetical 0.2 mm air gap caused a dose reduction > 2 %, emphasizing the fact that even the tiniest air gaps can cause a large reduction in measured dose. The negligible effect on an 18 mm field size illustrated that the electronic disequilibrium caused by such small air gaps only affects the dosimetry of the very small fields. When performing small field dosimetry, care must be taken to avoid any air gaps, as can be often present when inserting detectors into solid phantoms. It is recommended that very small field dosimetry is performed in liquid water. When using small photon fields, sub-millimetre air gaps can also affect patient dosimetry if they cannot be spatially resolved on a CT scan. However the effect on the patient is debatable as the dose reduction caused by a 1 mm air gap, starting out at 19% in the first 0.1 mm behind the air gap, decreases to < 5 % after just 2 mm, and electronic equilibrium is fully re-established after just 5 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the effect of nano particles on natural convection of water based nanofluids contained in an open rectangular cavity is carried out numerically. The flow pattern and heat transfer characteristics are studied for different values of volume fraction in the range 0   0.2 , Rayleigh number in the range 9 1 Ra 10 and the nano particles with different thermo physical properties. It was found that for low Rayleigh numbers, heat transfer exhibits a decreasing trend for increasing values of volume fraction of oxide nanofluids, whereas for higher values of Rayleigh numbers, an increasing trend of heat transfer was observed due to increase in the volume fraction of nanofluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their small collecting volume diodes are commonly used in small field dosimetry. However the relative sensitivity of a diode increases with decreasing small field size. Conversely, small air gaps have been shown to cause a significant decrease in the sensitivity of a detector as the field size is decreased. Therefore this study uses Monte Carlo simulations to look at introducing air upstream to diodes such that they measure with a constant sensitivity across all field sizes in small field dosimetry. Varying thicknesses of air were introduced onto the upstream end of two commercial diodes (PTW 60016 photon diode and PTW 60017 electron diode), as well as a theoretical unenclosed silicon chip using field sizes as small as 5 mm × 5 mm . The metric D_(w,Q)/D_(Det,Q) used in this study represents the ratio of the dose to a point of water to the dose to the diode active volume, for a particular field size and location. The optimal thickness of air required to provide a constant sensitivity across all small field sizes was found by plotting D_(w,Q)/D_(Det,Q) as a function of introduced air gap size for various field sizes, and finding the intersection point of these plots. That is, the point at which D_(w,Q)/D_(Det,Q) was constant for all field sizes was found. The optimal thickness of air was calculated to be 3.3 mm, 1.15 mm and 0.10 mm for the photon diode, electron diode and unenclosed silicon chip respectively. The variation in these results was due to the different design of each detector. When calculated with the new diode design incorporating the upstream air gap, k_(Q_clin 〖,Q〗_msr)^(f_clin 〖,f〗_msr ) was equal to unity to within statistical uncertainty (0.5 %) for all three diodes. Cross-axis profile measurements were also improved with the new detector design. The upstream air gap could be implanted on the commercial diodes via a cap consisting of the air cavity surrounded by water equivalent material. The results for the unclosed silicon chip show that an ideal small field dosimetry diode could be created by using a silicon chip with a small amount of air above it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the mixed convection heat transfer and fluid flow behaviors in a lid-driven square cavity filled with high Prandtl number fluid (Pr = 5400, ν = 1.2×10-4 m2/s) at low Reynolds number is studied using thermal Lattice Boltzmann method (TLBM) where ν is the viscosity of the fluid. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effects of the variations of non dimensional mixed convection parameter called Richardson number(Ri) with and without heat generating source on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles as well as stream function and temperature contours for Ri ranging from 0.1 to 5.0 with other controlling parameters that present in this study. It is found that LBM has good potential to simulate mixed convection heat transfer and fluid flow problem. Finally the simulation results have been compared with the previous numerical and experimental results and it is found to be in good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab lMLC attachment for square field sizes down to 6 mm 9 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3 % dose reduction relative to a Monte Carlo simulation with no air gap...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of handling and fixation processes on the two-photon fluorescence spectroscopy of endogenous fluorophors in mouse skeletal muscle. The skeletal muscle was handled in one of two ways: either sectioned without storage or sectioned following storage in a freezer. The two-photon fluorescence spectra measured for different storage or fixation periods show a differential among those samples that were stored in water or were fixed either in formalin or methanol. The spectroscopic results indicate that formalin was the least disruptive fixative, having only a weak effect on the two-photon fluorescence spectroscopy of muscle tissue, whereas methanol had a significant influence on one of the autofluorescence peaks. The two handling processes yielded similar spectral information, indicating no different effects between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of radiation on natural convection of Newtonian fluid contained in an open cavity is investigated in this study. The governing partial differential equations are solved numerically using the Alternate Direct Implicit method together with the Successive Over Relaxation method. The study is focused on studying the flow pattern and the convective and radiative heat transfer rates are studied for different values of radiation parameters namely, the optical thickness of the fluid, scattering albedo, and the Planck number. It was found that in the optically thin limit, an increase in the optical thickness of the fluid raises the temperature and radiation heat transfer of the fluid. However, a further increase in the optical thickness decreases the radiative heat transfer rate due to increase in the energy level of the fluid, which ultimately reduces the total heat transfer rate within the fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-photon fluorescence spectroscopy has been performed on rat skeletal muscles to investigate the effect of fixation processes on the micro-environments of the endogenous fluorophors in rat skeletal muscles. The two-photon fluorescence spectra measured for different fixation periods show a differential among those samples that were fixed in water, formalin and methanol, respectively. The results imply that two-photon fluorescence spectroscopy can be a potential technique for identification of healthy and malignant biological tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study investigates the effects of temporary tissue expanders (TTEs) on the dose distributions in breast cancer radiotherapy treatments under a variety of conditions. Methods: Using EBT2 radiochromic film, both electron and photon beam dose distribution measurements were made for different phantoms, and beam geometries. This was done to establish a more comprehensive understanding of the implant’s perturbation effects under a wider variety of conditions. Results: The magnetic disk present in a tissue expander causes a dose reduction of approximately 20% in a photon tangent treatment and 56% in electron boost fields immediately downstream of the implant. The effects of the silicon elastomer are also much more apparent in an electron beam than a photon beam. Conclusions: Evidently, each component of the TTE attenuates the radiation beam to different degrees. This study has demonstrated that the accuracy of photon and electron treatments of post-mastectomy patients is influenced by the presence of a tissue expander for various beam orientations. The impact of TTEs on dose distributions establishes the importance of an accurately modelled high-density implant in the treatment planning system for post-mastectomy patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition from a steady to an unsteady flow induced by an adiabatic fin on the sidewall of a differentially heated air-filled cavity is numerically investigated. Numerical simulations have been performed over the range of Rayleigh numbers from Ra = 105–109. The temporal development and spatial structures of natural convection flows in the cavity with a fin are described. It has been demonstrated that the fin may induce the transition to an unsteady flow and the critical Rayleigh number for the occurrence of the transition is between 3.72 × 106 and 3.73 × 106. Furthermore, the peak frequencies of the oscillations triggered by different mechanisms are obtained through spectral analysis. It has been found that the flow rate through the cavity with a fin is larger than that without a fin under the unsteady flow, indicating that the fin may improve the unsteady flow in the cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double diffusive Marangoni convection flow of viscous incompressible electrically conducting fluid in a square cavity is studied in this paper by taking into consideration of the effect of applied magnetic field in arbitrary direction and the chemical reaction. The governing equations are solved numerically by using alternate direct implicit (ADI) method together with the successive over relaxation (SOR) technique. The flow pattern with the effect of governing parameters, namely the buoyancy ratio W, diffusocapillary ratio w, and the Hartmann number Ha, is investigated. It is revealed from the numerical simulations that the average Nusselt number decreases; whereas the average Sherwood number increases as the orientation of magnetic field is shifted from horizontal to vertical. Moreover, the effect of buoyancy due to species concentration on the flow is stronger than the one due to thermal buoyancy. The increase in diffusocapillary parameter, w caus

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is difficult to determine sulfur-containing volatile organic compounds in the atmosphere because of their reactivity. Primary off-line techniques may suffer losses of analytes during the transportation from field to laboratory and sample preparation. In this study, a novel method was developed to directly measure dimethyl sulfide at parts-per-billion concentration levels in the atmosphere using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry. This technique offers continuous sampling at a response rate of one measurement per second, or cumulative measurements over longer time periods. Laboratory prepared samples of different concentrations of dimethyl sulfide in pure nitrogen gas were analyzed at several sampling frequencies. Good precision was achieved using sampling periods of at least 60 seconds with a relative standard deviation of less than 25%. The detection limit for dimethyl sulfide was below the 3 ppb olfactory threshold. These results demonstrate that single photon ionization time-of-flight mass spectrometry is a valuable tool for rapid, real-time measurements of sulfur-containing organic compounds in the air.