875 resultados para Caving mining
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).
Resumo:
The wide range of contributing factors and circumstances surrounding crashes on road curves suggest that no single intervention can prevent these crashes. This paper presents a novel methodology, based on data mining techniques, to identify contributing factors and the relationship between them. It identifies contributing factors that influence the risk of a crash. Incident records, described using free text, from a large insurance company were analysed with rough set theory. Rough set theory was used to discover dependencies among data, and reasons using the vague, uncertain and imprecise information that characterised the insurance dataset. The results show that male drivers, who are between 50 and 59 years old, driving during evening peak hours are involved with a collision, had a lowest crash risk. Drivers between 25 and 29 years old, driving from around midnight to 6 am and in a new car has the highest risk. The analysis of the most significant contributing factors on curves suggests that drivers with driving experience of 25 to 42 years, who are driving a new vehicle have the highest crash cost risk, characterised by the vehicle running off the road and hitting a tree. This research complements existing statistically based tools approach to analyse road crashes. Our data mining approach is supported with proven theory and will allow road safety practitioners to effectively understand the dependencies between contributing factors and the crash type with the view to designing tailored countermeasures.
Resumo:
Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the most predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.
Resumo:
Traffic safety is a major concern world-wide. It is in both the sociological and economic interests of society that attempts should be made to identify the major and multiple contributory factors to those road crashes. This paper presents a text mining based method to better understand the contextual relationships inherent in road crashes. By examining and analyzing the crash report data in Queensland from year 2004 and year 2005, this paper identifies and reports the major and multiple contributory factors to those crashes. The outcome of this study will support road asset management in reducing road crashes.
Resumo:
Over the last decade, the rapid growth and adoption of the World Wide Web has further exacerbated user needs for e±cient mechanisms for information and knowledge location, selection, and retrieval. How to gather useful and meaningful information from the Web becomes challenging to users. The capture of user information needs is key to delivering users' desired information, and user pro¯les can help to capture information needs. However, e®ectively acquiring user pro¯les is di±cult. It is argued that if user background knowledge can be speci¯ed by ontolo- gies, more accurate user pro¯les can be acquired and thus information needs can be captured e®ectively. Web users implicitly possess concept models that are obtained from their experience and education, and use the concept models in information gathering. Prior to this work, much research has attempted to use ontologies to specify user background knowledge and user concept models. However, these works have a drawback in that they cannot move beyond the subsumption of super - and sub-class structure to emphasising the speci¯c se- mantic relations in a single computational model. This has also been a challenge for years in the knowledge engineering community. Thus, using ontologies to represent user concept models and to acquire user pro¯les remains an unsolved problem in personalised Web information gathering and knowledge engineering. In this thesis, an ontology learning and mining model is proposed to acquire user pro¯les for personalised Web information gathering. The proposed compu- tational model emphasises the speci¯c is-a and part-of semantic relations in one computational model. The world knowledge and users' Local Instance Reposito- ries are used to attempt to discover and specify user background knowledge. From a world knowledge base, personalised ontologies are constructed by adopting au- tomatic or semi-automatic techniques to extract user interest concepts, focusing on user information needs. A multidimensional ontology mining method, Speci- ¯city and Exhaustivity, is also introduced in this thesis for analysing the user background knowledge discovered and speci¯ed in user personalised ontologies. The ontology learning and mining model is evaluated by comparing with human- based and state-of-the-art computational models in experiments, using a large, standard data set. The experimental results are promising for evaluation. The proposed ontology learning and mining model in this thesis helps to develop a better understanding of user pro¯le acquisition, thus providing better design of personalised Web information gathering systems. The contributions are increasingly signi¯cant, given both the rapid explosion of Web information in recent years and today's accessibility to the Internet and the full text world.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.
Resumo:
Many data mining techniques have been proposed for mining useful patterns in databases. However, how to effectively utilize discovered patterns is still an open research issue, especially in the domain of text mining. Most existing methods adopt term-based approaches. However, they all suffer from the problems of polysemy and synonymy. This paper presents an innovative technique, pattern taxonomy mining, to improve the effectiveness of using discovered patterns for finding useful information. Substantial experiments on RCV1 demonstrate that the proposed solution achieves encouraging performance.
Resumo:
Road curves are an important feature of road infrastructure and many serious crashes occur on road curves. In Queensland, the number of fatalities is twice as many on curves as that on straight roads. Therefore, there is a need to reduce drivers’ exposure to crash risk on road curves. Road crashes in Australia and in the Organisation for Economic Co-operation and Development(OECD) have plateaued in the last five years (2004 to 2008) and the road safety community is desperately seeking innovative interventions to reduce the number of crashes. However, designing an innovative and effective intervention may prove to be difficult as it relies on providing theoretical foundation, coherence, understanding, and structure to both the design and validation of the efficiency of the new intervention. Researchers from multiple disciplines have developed various models to determine the contributing factors for crashes on road curves with a view towards reducing the crash rate. However, most of the existing methods are based on statistical analysis of contributing factors described in government crash reports. In order to further explore the contributing factors related to crashes on road curves, this thesis designs a novel method to analyse and validate these contributing factors. The use of crash claim reports from an insurance company is proposed for analysis using data mining techniques. To the best of our knowledge, this is the first attempt to use data mining techniques to analyse crashes on road curves. Text mining technique is employed as the reports consist of thousands of textual descriptions and hence, text mining is able to identify the contributing factors. Besides identifying the contributing factors, limited studies to date have investigated the relationships between these factors, especially for crashes on road curves. Thus, this study proposed the use of the rough set analysis technique to determine these relationships. The results from this analysis are used to assess the effect of these contributing factors on crash severity. The findings obtained through the use of data mining techniques presented in this thesis, have been found to be consistent with existing identified contributing factors. Furthermore, this thesis has identified new contributing factors towards crashes and the relationships between them. A significant pattern related with crash severity is the time of the day where severe road crashes occur more frequently in the evening or night time. Tree collision is another common pattern where crashes that occur in the morning and involves hitting a tree are likely to have a higher crash severity. Another factor that influences crash severity is the age of the driver. Most age groups face a high crash severity except for drivers between 60 and 100 years old, who have the lowest crash severity. The significant relationship identified between contributing factors consists of the time of the crash, the manufactured year of the vehicle, the age of the driver and hitting a tree. Having identified new contributing factors and relationships, a validation process is carried out using a traffic simulator in order to determine their accuracy. The validation process indicates that the results are accurate. This demonstrates that data mining techniques are a powerful tool in road safety research, and can be usefully applied within the Intelligent Transport System (ITS) domain. The research presented in this thesis provides an insight into the complexity of crashes on road curves. The findings of this research have important implications for both practitioners and academics. For road safety practitioners, the results from this research illustrate practical benefits for the design of interventions for road curves that will potentially help in decreasing related injuries and fatalities. For academics, this research opens up a new research methodology to assess crash severity, related to road crashes on curves.
Resumo:
Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour, and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.