985 resultados para Cave of the Winds
Resumo:
The response of the Sao Paulo Continental Shelf (SPCS) to synoptic wind forcing has been analyzed. Two different methods are used for this purpose, one based on hydrographic data, bottom topography, and geographical characteristics, and a second on analyzing currentmeter data directly and using empirical orthogonal functions. Both methods show similar results for an essentially barotropic shelf. The SPCS response in the subinertial frequency band appears to be trapped on the continental shelf. Numerical experiments have also been carried out showing results that qualitatively agree with the observations, including the velocity component parallel to the coastline.
Resumo:
Il vento di barriera (VB) è un fenomeno meteorologico a mesoscala che interessa il flusso nei bassi strati atmosferici ed è dovuto all'interazione con l'orografia. Se il numero di Froude upstream è sufficientemente piccolo si genera una deviazione orizzontale del flusso incidente. Si può raggiungere uno stato quasi-stazionario, nel quale un intenso vento soffia parallelo all'orografia nei bassi strati. Nel presente lavoro si è innanzitutto sviluppata una climatologia degli eventi di VB nella regione italiana su un periodo biennale. Gli eventi sono stati classificati per la velocità del flusso incidente e la velocità e direzione del VB a 950 hPa, e per il numero di Froude upstream. Si è poi studiata la distribuzione degli eventi rispetto al numero di Froude. La climatologia è risultata in buon accordo con la teoria idealizzata dei flussi sopra l'orografia. Tre casi di studio sono stati successivamente simulati utilizzando i modelli BOLAM e MOLOCH dell'istituto CNR-ISAC di Bologna. Per ciascun evento sono stati calcolati il numero di Froude upstream e i parametri principali, quali velocità, estensione, temperatura ecc. Per uno dei casi, riguardante le Alpi orientali, le simulazioni sono state confrontate con dati osservati di vento, pressione, temperatura e precipitazione. Sono poi stati condotti dei sensitivity tests con orografia diminuita su ognuno degli eventi. È stata così verificata l'importanza dell'effetto orografico e l'intensità del fenomeno del VB è stata associata al numero di Froude. Un indice, denominato Barrier Wind Index (BWI) è stato ideato a tale scopo. Le simulazioni hanno mostrato un buon accordo con la teoria, indicandone i limiti di applicabilità all'atmosfera reale. In particolare, il Barrier Wind Index tende ad aumentare linearmente al diminuire del numero di Froude. Le simulazioni hanno evidenziato l'elevata influenza del VB sulla circolazione atmosferica a mesoscala, sulla distribuzione e intensità della precipitazione e sull'avvezione di temperatura e umidità.
Resumo:
This thesis presents a paleoclimatic/paleoenvironmental study conducted on clastic cave sediments of the Moravian Karst, Czech Republic. The study is based on environmental magnetic techniques, yet a wide range of other scientific methods was used to obtain a clearer picture of the Quaternary climate. My thesis also presents an overview of the significance of cave deposits for paleoclimatic reconstructions, explains basic environmental magnetic techniques and offers background information on the study area – a famous karst region in Central Europe with a rich history. In Kulna Cave magnetic susceptibility variations and in particular variations in pedogenic susceptibility yield a detailed record of the palaeoenvironmental conditions during the Last Glacial Stage. The Kulna long-term climatic trends agree with the deep-sea SPECMAP record, while the short-term oscillations correlate with rapid changes in the North Atlantic sea surface temperatures. Kulna Cave sediments reflect the intensity of pedogenesis controlled by short-term warmer events and precipitation over the mid-continent and provide a link between continental European climate and sea surface temperatures in the North Atlantic during the Last Glacial Stage. Given the number of independent climate proxies determined from the entrance facies of the cave and their high resolution, Kulna is an extremely important site for studying Late Pleistocene climate. In the interior of Spiralka Cave, a five meter high section of fine grained sediments deposited during floods yields information on the climatic and environmental conditions of the last millenium. In the upper 1.5 meters of this profile, mineral magnetic and other non-magnetic data indicate that susceptibility variations are controlled by the concentration of magnetite and its magnetic grain size. Comparison of our susceptibility record to the instrumental record of winter temperature anomalies shows a remarkable correlation. This correlation is explained by coupling of the flooding events, cultivation of land and pedogenetic processes in the cave catchment area. A combination of mineral magnetic and geochemical proxies yields a detail picture of the rapidly evolving climate of the near past and tracks both natural and human induced environmental changes taking place in the broader region.
Resumo:
Morrison Cave is located about 50 miles southeast of Butte, Montana. It was named after the man who discovered it. Later it was taken over by the State and renamed Morrison Cave State Park. Recently the government with the aid of the Civilian Conservation Corps has built a new road to the cave and has made the interior more accessible. The name of the cave is now Lewis and Clark Cavern National Monument.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.
Resumo:
The decadal-scale variability in winter hazardous winds in northern Switzerland from 1871 to present is investigated in the Twentieth Century Reanalysis (20CR). Independent wind speed measurements taken at Zurich climate station show that the interannual and decadal variability in hazardous winds in northern Switzerland is realistically represented in the 20CR. Both time series exhibit pronounced decadal-scale variability with periods between approximately 36 and 47 years. At these periodicities, the hazardous wind variability in northern Switzerland is positively correlated with the variability in the North Atlantic Oscillation, however the strength and statistical significance of their co-variability varies over time.
Resumo:
This work presents a characterization of the surface wind climatology over the Iberian Peninsula (IP). For this objective, an unprecedented observational database has been developed. The database covers a period of 6years (2002–2007) and consists of hourly wind speed and wind direction data recorded at 514 automatic weather stations. Theoriginal observations underwent a quality control process to remove rough errors from the data set. In the first step, the annual and seasonal mean behaviour of the wind field are presented. This analysis shows the high spatial variability of the wind as a result of its interaction with the main orographic features of the IP. In order to simplify the characterization of the wind, a clustering procedure was applied to group the observational sites with similar temporal wind variability. A total of 20 regions are identified. These regions are strongly related to the main landforms of the IP. The wind behaviour of each region, characterized by the wind rose (WR), annual cycle (AC) and wind speed histogram, is explained as the response of each region to the main circulation types (CTs) affecting the IP. Results indicate that the seasonal variability of the synoptic scale is related with intra-annual variability and modulated by local features in the WRs variability. The wind speed distribution not always fit to a unimodal Weibull distribution consequence of interactions at different atmospheric scales. This work contributes to a deeper understanding of the temporal and spatial variability of surface winds. Taken together, the wind database created, the methodology used and the conclusion extracted are a benchmark for future works based on the wind behaviour.
Resumo:
The use of hindcast climatic data is quite extended for multiple applications. However, this approach needs the support of a validation process to allow its drawbacks and, therefore, confidence levels to be assessed. In this work, the strategy relies on an hourly wind database resulting from a dynamical downscaling experiment, with a spatial resolution of 10 km, covering the Iberian Peninsula (IP), driven by the ERA40 reanalysis (1959–2001) extended by European Centre for Medium-Range Weather Forecast (ECMWF) analysis (2002–2007) and comprising two main steps. Initially, the skill of the simulation is evaluated comparing the quality-tested observational database (Lorente-Plazas et al., 2014) at local and regional scales. The results show that the model is able to portray the main features of the wind over the IP: annual cycles, wind roses, spatial and temporal variability, as well as the response to different circulation types. In addition, there is a significant added value of the simulation with respect to driving conditions, especially in regions with a complex orography. However, some problems are evident, the major drawback being the systematic overestimation of the wind speed, which is mainly attributed to a missrepresentation of frictional forces. The model skill is also lower along the Mediterranean coast and for the Pyrenees. In a second phase, the high spatio-temporal resolution of the pseudo-real wind database is used to explore the limitations of the observational database. It is shown that missing values do not affect the characterisation of the wind climate over the IP, while the length of the observational period (6 years) is sufficient for most regions, with only a few exceptions. The spatial distribution of the observational sampling schemes should be enhanced to improve the correct assessment of all IP wind regimes, particularly in some mountainous areas.
Resumo:
Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1-MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records. Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave's catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. d13C and d18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (~0.7-0.1 ka BP) that was ~1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. 'Hendy tests' indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ~3.5 to 2.5 and from ~0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.
Resumo:
We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.
Resumo:
The research work that here is summarized, it is classed on the area of dynamics and measures of railway safety, specifically in the study of the influence of the cross wind on the high-speed trains as well as the study of new mitigation measures like wind breaking structures or wind fences, with optimized shapes. The work has been developed in the Research Center in Rail Technology (CITEF), and supported by the Universidad Politécnica de Madrid, Spain.