969 resultados para Cation ordering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the aim of a better understanding of both cationic distribution and magnetic properties of the uniaxial SrFe12-xCrxO19hexagonal ferrites, Mössbauer spectroscopy, neutron diffraction and high field magnetization measurements have been carried out. The Cr3+ions occupy the octahedral sites of the M structure with a preference hierarchy within them. The magnetic measurements, together with the deduced cationic distribution, indicate that some sublattices have a random spin canting around the c-axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of Sn4+ cations within the five crystallographic sites of the magnetoplumbite (M) ‐like compound BaFe12−2xCoxSnxO19 has been analyzed using single‐crystal x‐ray‐diffraction data. The species Fe3+ and Co2+ cannot be distinguished using x rays because of their very similar atomic numbers; however, the calculation of the apparent valencies for the different sites allows an insight into the Co2+ cation segregation. The use of previous data from neutron powder diffraction allows a precise picture of the cation distribution, which indicates a pronounced site selectivity for both Sn4+ and Co2+ cations. The Sn4+ cations prefer the 4f2 sites and to a much lower extent the 12k sites, while they do not enter the octahedral 2a sites at all. Co2+ cations are distributed among tetrahedral and octahedral sites displaying a clear preference for the tetrahedral 4f1 sites. Magnetic measurements indicate that the compound still exhibits uniaxial anisotropy with the easy direction parallel to the c axis. Nevertheless, the magnetic structure shows a considerable degree of noncolinearity. A strong reduction of the magnetic anisotropy regarding that of the undoped compound is also detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetization, heat capacity, and neutron diffraction experiments on the beta-phase of the dithiadiazolyl radical, p-NC.C6F4.CNSSN., provide conclusive evidence that this system exhibits noncollinear antiferromagnetism at 35.5 K, an unprecedented temperature for an organic radical. On the basis of magnetization and powder neutron diffraction results, coupled with theoretical calculations of the spin distribution within the molecule, a magnetic structure for this compound is proposed in which the interactions propagate through S . . .N contacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first example of a transition to long-range magnetic order in a purely dipolarly interacting molecular magnet. For the magnetic cluster compound Mn6O4Br4(Et2dbm)6, the anisotropy experienced by the total spin S=12 of each cluster is so small that spin-lattice relaxation remains fast down to the lowest temperatures, thus enabling dipolar order to occur within experimental times at Tc=0.16 K. In high magnetic fields, the relaxation rate becomes drastically reduced and the interplay between nuclear- and electron-spin lattice relaxation is revealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed numerical simulations of three dimensional suspensions of active particles to characterize the capabilities of the hydrodynamic stresses induced by active swimmers to promote global order and emergent structures in active suspensions. We have considered squirmer suspensions embedded in a fluid modeled under a Lattice Boltzmann scheme. We have found that active stresses play a central role to decorrelate the collective motion of squirmers and that contractile squirmers develop significant aggregates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Adobe (R) animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na+ and K+ translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P-2c-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E-1/E-2-ATPase as it undergoes conformational changes between the E-1 and E-2 forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger's scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure function relationship. The movements of the various domains within the (Na, K)-ATPase alpha-subunit illustrate the conformational changes that occur during Na+ and K+ translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the "core engine" of the pump, with respect to ATP binding, cation transport, and ADP and P-i release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we de. ne a partial ordering of knots and links using a special property derived from their minimal diagrams. A link K' is called a predecessor of a link K if Cr(K') < Cr(K) and a diagram of K' can be obtained from a minimal diagram D of K by a single crossing change. In such a case, we say that K' < K. We investigate the sets of links that can be obtained by single crossing changes over all minimal diagrams of a given link. We show that these sets are specific for different links and permit partial ordering of all links. Some interesting results are presented and many questions are raised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results from both, calorimetric and dilatometric studies of the isothermal ordering process taking place in a Cu-Zn-Al shape memory alloy after quenches from Tq temperatures ranging from 350 K to 1200 K. The dissipated energy and the length variations of the system are obtained during the process. The change of these quantities in the whole process have been compared with the difference [MATH] between Ms, measured after the relaxation and Ms measured just after the quench. We obtain that these three quantities present, as a function of Tq, the same qualitative behaviour. These changes are then associated with changes of the L21 ordering after the quench in the system. The relaxational process does not follow a single exponential decay. Instead, a continuous slowing down is observed. A relaxation time [MATH] has been defined to characterize the relaxation rate. We show that [MATH] depends on both the annealing and the quenching (Tq [MATH] 800 K) temperatures through an Arrhenius law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuron-specific K-Cl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in pyramidal neurons, and recent in vitro data suggest that this protein plays a role in the development of dendritic spines. The in vivo relevance of these observations is, however, unknown. Using in utero electroporation combined with post hoc iontophoretic injection of Lucifer Yellow, we show that premature expression of KCC2 induces a highly significant and permanent increase in dendritic spine density of layer 2/3 pyramidal neurons in the somatosensory cortex. Whole-cell recordings revealed that this increased spine density is correlated with an enhanced spontaneous excitatory activity in KCC2-transfected neurons. Precocious expression of the N-terminal deleted form of KCC2, which lacks the chloride transporter function, also increased spine density. In contrast, no effect on spine density was observed following in utero electroporation of a point mutant of KCC2 (KCC2-C568A) where both the cotransporter function and the interaction with the cytoskeleton are disrupted. Transfection of the C-terminal domain of KCC2, a region involved in the interaction with the dendritic cytoskeleton, also increased spine density. Collectively, these results demonstrate a role for KCC2 in excitatory synaptogenesis in vivo through a mechanism that is independent of its ion transport function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-stranded DNA (dsDNA) can trigger the production of type I interferon (IFN) in plasmacytoid dendritic cells (pDCs) by binding to endosomal Toll-like receptor-9 (TLR9; refs , , , , ). It is also known that the formation of DNA-antimicrobial peptide complexes can lead to autoimmune diseases via amplification of pDC activation. Here, by combining X-ray scattering, computer simulations, microscopy and measurements of pDC IFN production, we demonstrate that a broad range of antimicrobial peptides and other cationic molecules cause similar effects, and elucidate the criteria for amplification. TLR9 activation depends on both the inter-DNA spacing and the multiplicity of parallel DNA ligands in the self-assembled liquid-crystalline complex. Complexes with a grill-like arrangement of DNA at the optimum spacing can interlock with multiple TLR9 like a zipper, leading to multivalent electrostatic interactions that drastically amplify binding and thereby the immune response. Our results suggest that TLR9 activation and thus TLR9-mediated immune responses can be modulated deterministically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge ordered La1/3Sr2/3FeO3−δ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M¨ossbauer, and polarized neutron studies. A complex scenario of short-range charge and magnetic ordering is realized from the polarized neutron studies in nanocrystalline specimen. This short-range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+ and Fe5+ compared to bulk counterpart as evident in the M¨ossbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+ and Fe5+ are about 3.15 μB and 1.57 μB for bulk, and 2.7 μB and 0.53 μB for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass-like transition around ∼65 K, below which EB appears. Overall results propose that finite-size effect directs the complex glassy magnetic behavior driven by unconventional short-range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.