526 resultados para Catalisadores de FCC
Resumo:
This work describes a hydrometallurgical route for processing spent commercial catalysts (CoMo and NiMo/Al2O3). Samples were preoxidized (500 ºC, 5 h) in order to eliminate coke and other volatile species present. The calcined solid was dissolved in concentrated H2SO4 and water (1:1 vol/vol) at 90 ºC; the insoluble matter was separated from the solution. Molybdenum was recovered by solvent extraction using tertiary amines at pH around 1.8. Cobalt (or nickel) was separated by addition of aqueous ammonium oxalate at the above pH. Phosphorus was removed by passing the liquid through a strong anion exchange column. Aluminum was recovered by neutralizing the solution with NaOH. The route presented in this work generates less final aqueous wastes because it is not necessary to use alkaline medium during the metal recovery steps.
Resumo:
N-heterocyclic carbenes (NHCs) have become of considerable importance in modern organometallic chemistry and homogeneous catalysis. There are several advantages in the use NHCs over their phosphorus analogues, which explains the enormous development of NHC ligands in the field of organometallic catalysis in the past few years. In this article, we present an overview of the importance of the catalysts containing NHC ligands, their synthesis, some pertinent synthetic applications, and a brief comparison with other catalysts.
Resumo:
The main topics related to the use of dual-site catalysts in the production of polymers with broad molecular weight distribution are reviewed. The polymerization using dual-site catalysts is more economical and allows to produce a higher quality product than other processes, such as polymer blend and multistage reactors. However, the formulation of these catalysts is quite complicated since the same catalyst must produce distinct polymer grades. In addition, the release of patents concerning the combination of metallocenes and new technologies for polymerization shows that polymerization processes using dual-site catalysts are of current industrial interest.
Resumo:
Hydrotalcite-like compounds having Mg partially replaced by Cu or Mn were prepared and used as precursors for two mixed oxides (Cu-OM50 and Mn-OM50) that were evaluated for SOx removal in the presence of O2, NO and CO. Under SO2/O2 reaction system, SOx removal was slightly higher over Cu-OM50. The addition of CO and NO to the feed markedly hindered the SO2 oxidation over Cu-OM50 while no significant effect was observed for Mn-OM50. For the regeneration step, the use of propane instead of H2 reduces regeneration capacity, mainly for Cu-OM50. Mn-OM50 was less affected by the feed composition, suggesting that it was a promising additive for SOx removal.
Resumo:
A laboratory experiment that enables the professor to introduce the problematic of sustainable development in pharmaceutical chemistry to undergraduate students is proposed, using a simple synthetic procedure. Cholesteryl acetate is prepared by the esterification of cholesterol using Montmorillonite K10 as heterogeneous catalyst. Cholesterol and cholesteryl acetate are characterized by spectroscopic (¹H RMN, 13C RMN, FTIR) and thermal analysis techniques. The thermal methods are used to introduce the concepts of polymorphism and the nature of mesophases.
Resumo:
Bulk and supported molybdenum based catalysts, modified by nickel, phosphorous or tungsten were studied by NEXAFS spectroscopy at the Mo L III and L II edges. The techniques of principal component analysis (PCA) together with a linear combination analysis (LCA) allowed the detection and quantification of molybdenum atoms in two different coordination states in the oxide form of the catalysts, namely tetrahedral and octahedral coordination.
Resumo:
The recent increase in the world biodiesel demand, along with the need to reduce costs while improving the environmental sustainability of the entire biodiesel production chain, have led to the search for heterogeneous catalysts that would be efficient and highly amenable to recycling. Many classes of materials have been tested for these purposes. Among these are zeolites, ion-exchange resins, inorganic oxides, guanidines, metal complexes, layered compounds and ionic liquids. This review article describes the structure, properties, synthesis and performance of compounds that are catalytic active in both esterification and transesterification reactions.
Resumo:
The inadequacy of strategies used for the heterogeneization of metallocene catalysts is pointed out as one of the main causes of the lack of industrial employability of such polymerization catalysts. The main problems are the necessity of large quantity of MAO (cocatalyst) and the inability to control molecular mass distribution of the polymers. Based on this background, the main strategies for the heterogeneization of metallocenes are here reviewed. The advantages and disadvantages of each strategy are presented and discussed on theoretical and practical perspective. Considering the results reported on the different researches, outcomes of heterogeneization strategies are pointed out.
Resumo:
Materials containing aluminum and iron oxide were synthesized through the preparation of hybrid spheres and tested in the dehydrogenation of ethylbenzene in the presence of CO2. The catalytic results suggest that the high initial ethylbenzene conversion is due to the contribution of basic sites. These results also point to a competitive process between CO2 adsorption and the oxidative dehydrogenation of ethylbenzene for the basic sites (lattice oxygen). In spite of the coke deposition is originating from ethylbenzene and CO2, the amount of carbonaceous deposits was smaller with the presence of CO2, if compared with the dehydrogenation in the absence of CO2.
Resumo:
In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity
Resumo:
Silica obtained from rice husk after acid leaching and calcination was compared to commercial silica as a catalyst support. CaO and SnO2 catalysts were prepared by impregnation and tested in the transesterification of soybean oil and the esterification of oleic acid. CaO catalysts showed basic character and were the most active for transesterification, whereas SnO2 catalysts were acid and the most effective for esterification. In both cases the performances of the catalysts prepared with rice husk ash and commercial silica were similar. These results demonstrate that rice husk is a cost-effective and environmentally-friendly source of silica that can be used as a catalyst support.
Resumo:
Automotive catalyst, using in Brazil since 1992, is a essential technology for vehicular emissions control. Noble metals are the active phase of these catalysts, and cerium zirconium mixed oxides (CZ), responsibles for the oxygen storage capacity (OSC), one of the most important aspect for the operational performance of the catalyst. In this context, the oxireduction properties analysis of CZ and Pd/CZ (palladium supported in CZ) system are the objective of this study, as well as, the impact of the thermal aging in the OSC. Aging consisted of treatments at 900 or 1200 °C, for 12 or 36 h, in oxidizing condition.
Resumo:
The catalytic performance of Ni/ZrO2 catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting with the support, due to the higher dispersion effect. The best catalytic performance at 450 ºC was found for the Ni/12LZ catalyst, which exhibited an effluent gaseous mixture with the highest H2 yield.
Resumo:
This study was carried out to synthesize, characterize and evaluate the application of mesoestruturated catalysts MCM-41, 5%MoO3-MCM-41 and 5%NiO-MCM-41 in the hydrolysis of microcrystalline cellulose. XRD results indicate that the phase of mesoporous MCM-41 was obtained and that the introduction of metal oxides did not affect this mesoporous phase. About the heterogeneous hydrolysis reaction, it was observed that the increase in temperature results in a higher concentration of glucose and the catalyst 5%MoO3-MCM-41 provides the highest concentrations of glucose.
Resumo:
Use of clays as catalyzers in heterogeneous processes has increased significantly given their low cost, safety and commercial availability. However, interconnected political, economic, social, environmental, geological, and chemical aspects should be considered for chemical processes to satisfy sustainable development concepts. This concept requires complex thinking involving different areas of knowledge in dialogue, contrasting with classical thought, which is linear and Cartesian. Thus, this paper discusses the principles of complex thought in the concept of sustainable development exemplified by use of clay as a clean technology in organic synthesis.