963 resultados para CYTOCHROME-P450 1A1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 (CYP450) is a class of enzymes where the substrate identification is particularly important to know. It would help medicinal chemists to design drugs with lower side effects due to drug-drug interactions and to extensive genetic polymorphism. Herein, we discuss the application of the 2D and 3D-similarity searches in identifying reference Structures with higher capacity to retrieve Substrates of three important CYP enzymes (CYP2C9, CYP2D6, and CYP3A4). On the basis of the complementarities of multiple reference structures selected by different similarity search methods, we proposed the fusion of their individual Tanimoto scores into a consensus Tanimoto score (T(consensus)). Using this new score, true positive rates of 63% (CYP2C9) and 81% (CYP2D6) were achieved with false positive rates of 4% for the CYP2C9-CYP2D6 data Set. Extended similarity searches were carried out oil a validation data set, and the results showed that by using the T(consensus) score, not only the area of a ROC graph increased, but also more substrates were recovered at the beginning of a ranked list.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 (CYP2B6) is an important enzyme that metabolizes more than eight compounds and about 3.0% of therapeutic drugs. The genetic polymorphisms of CYP2B6 have earlier been studied in Caucasian, Japanese and Korean, but the data are lacking for Han Chinese. The aim of this study was to investigate the frequencies of allelic variants of CYP2B6 in healthy Han Chinese and compare with those in other ethnic groups reported in the literature. Polymerase chain reaction (PCR)–restriction fragment length polymorphism (RFLP) method was used to test the five common non-synonymous single nucleotide polymorphisms (SNPs) of CYP2B6 gene, namely, 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T in unrelated healthy Han Chinese (n = 193). The study demonstrated that the frequencies of 64C > T, 516G > T, 777C > A, 785A > G and 1459C > T SNPs in Han Chinese were 0.03, 0.21, 0, 0.28 and 0.003, respectively. The frequencies of all five SNPs tested in female were higher than those in male, but the statistical difference was insignificant (P > 0.05). Compared to the data reported in the literature, the frequencies of common CYP2B6 allelic variants in Chinese are similar to those of other Asian populations including Japanese and Korean, but markedly different from those in Caucasians. These results indicate the presence of marked ethnic difference in CYP2B6 SNP frequencies between Chinese and Caucasian. Further studies are required to explore the impact of these SNPs of CYP2B6 gene on the clinical response (efficacy and toxicity) to drugs that are substrates for CYP2B6 in patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3A is responsible for the metabolism of about 60% of currently known drugs. However, this unusual low substrate specificity also makes CYP3A4 susceptible to reversible or irreversible inhibition by a variety of drugs. Mechanism-based inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYP isoenzymes to reactive metabolites capable of irreversibly binding covalently to CYP3A4. Approaches using in vitro, in silico and in vivo models can be used to study CYP3A4 inactivation by drugs. Human liver microsomes are always used to estimate inactivation kinetic parameters including the concentration required for half-maximal inactivation (K(I)) and the maximal rate of inactivation at saturation (k(inact)).Clinically important mechanism-based CYP3A4 inhibitors include antibacterials (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g. tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), antihypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their receptor modulators (e.g. gestodene and raloxifene), and several herbal constituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often possess several common moieties such as a tertiary amine function, furan ring, and acetylene function. It appears that the chemical properties of a drug critical to CYP3A4 inactivation include formation of reactive metabolites by CYP isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate, and occurrence of clinically significant pharmacokinetic interactions with coadministered drugs.Compared with reversible inhibition of CYP3A4, mechanism-based inhibition of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects, including some fatal events. For example, when aforementioned CYP3A4 inhibitors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4 substrates), torsades de pointes (a life-threatening ventricular arrhythmia associated with QT prolongation) may occur.However, predicting drug-drug interactions involving CYP3A4 inactivation is difficult, since the clinical outcomes depend on a number of factors that are associated with drugs and patients. The apparent pharmacokinetic effect of a mechanism-based inhibitor of CYP3A4 would be a function of its K(I), k(inact) and partition ratio and the zero-order synthesis rate of new or replacement enzyme. The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors, confounding in vitro-in vivo extrapolation. The clinical significance of CYP3A inhibition for drug safety and efficacy warrants closer understanding of the mechanisms for each inhibitor. Furthermore, such inactivation may be exploited for therapeutic gain in certain circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CYP2B6 is mainly expressed in the liver that has been thought historically to play an insignificant role in human drug metabolism. However, increased interest in this enzyme has been stimulated by the discovery of polymorphic and ethnic differences in CYP2B6 expression, identification of additional substrates for CYP2B6, and evidence for co-regulation with CYP3A4. This paper updates our knowledge about the structure, function, regulation and polymorphism of CYP2B6. CYP2B6 can metabolise approximately 8% of clinically used drugs (n > 60), including cyclophosphamide, ifosfamide, tamoxifen, ketamine, artemisinin, nevirapine, efavirenz, bupropion, sibutramine, and propofol. CYP2B6 is one of the CYP enzymes that bioactivate several procarcinogens and toxicants. This enzyme also metabolizes arachidonic acid, lauric acid, 17beta-estradiol, estrone, ethinylestradiol, and testosterone. Typical substrates of CYP2B6 are non-planar molecules, neutral or weakly basic, highly lipophilic with one or two hydrogen-bond acceptors. The crystal structure of CYP2B6 has not been resolved, while several pharmacophore and homology models of human CYP2B6 have been reported. Human CYP2B6 is closely regulated by constitutive androstane receptor (CAR/NR1I3) which can activate CYP2B6 expression upon ligand binding. Pregnane X receptor and glucocorticoid receptor also play a role in the regulation of CYP2B6. Induction of CYP2B6 may partially explain some clinical drug interactions observed. For example, coadministered carbamazepine decreases the systemic exposure of bupropion. There is a wide interindividual variability in the expression and activity of CYP2B6. Such a large variability is probably due to effects of genetic polymorphisms and exposure to drugs that are inducers or inhibitors of CYP2B6. To date, at least 28 allelic variants and some subvariants of CYP2B6 (*1B through *29) have been described and some of them have been shown to have important functional impact on drug clearance and drug response. For example, the efavirenz plasma levels in African-American subjects with the CYP2B6 homozygous 516T/T genotype are approximately 3-fold higher than individuals carrying the homozygous G/G genotype. The CYP2B6 516T/T genotype is associated with 1.7-fold greater plasma levels of nevirapine in HIV-infected patients. Smokers with the 1459C>T (R487C) variant of CYP2B6 may be more vulnerable to abstinence symptoms and relapse following treatment with bupropion as a smoking cessation agent. Further studies in the structure, function, regulation and polymorphism of CYP2B6 are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The pregnane X receptor (PXR) plays a critical role in the regulation of human cytochrome P450 3A4 (CYP3A4) gene. In this study, we investigated the effect of an array of compounds isolated from Chinese herbal medicines on the activity of PXR using a luciferase reporter gene assay in transiently transfected HepG2 and Huh7 cells and on the expression of PXR and CYP3A4 in LS174T cells. Furthermore, molecular docking was performed to investigate the binding modes of herbal compounds with PXR.

2. Praeruptorin A and C, salvianolic acid B, sodium danshensu, protocatechuic aldehyde, cryptotanshinone, emodin, morin, and tanshinone IIA significantly transactivated the CYP3A4 reporter gene construct in either HepG2 or Huh7 cells. The PXR mRNA expression in LS174T cells was significantly induced by physcion, protocatechuic aldehyde, salvianolic acid B, and sodium danshensu. However, epifriedelanol, morin, praeruptorin D, mulberroside A, tanshinone I, and tanshinone IIA significantly down-regulated the expression of PXR mRNA in LS174T cells.

3. All the herbal compounds tested can be readily docked into the ligand-binding cavity of PXR mainly through hydrogen bond and aromatic interactions with Ser247, Gln285, His407, and Arg401.

4. These findings suggest that herbal medicines can significantly regulate PXR and CYP3A4 and this has important implication in herb–drug interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insecticide resistance in laboratory selected Drosophila strains has been associated with upregulation of a range of different cytochrome P450s, however in recent field isolates of D. melanogaster resistance to DDT and other compounds is conferred by one P450 gene, Cyp6g1. Using microarray analysis of all Drosophila P450 genes, here we show that different P450 genes such as Cyp12d1 and Cyp6a8 can also be selected using DDT in the laboratory. We also show, however, that a homolog of Cyp6g1 is over-expressed in a field resistant strain of D. simulans. In order to determine why Cyp6g1 is so widely selected in the field we examine the pattern of cross-resistance of both resistant strains and transgenic flies over-expressing Cyp6g1 alone. We show that all three DDT selected P450s can confer resistance to the neonicotinoid imidacloprid but that Cyp6a8 confers no cross-resistance to malathion. Transgenic flies over-expressing Cyp6g1 also show cross-resistance to other neonicotinoids such as acetamiprid and nitenpyram. We suggest that the broad level of cross-resistance shown by Cyp6g1 may have facilitated its selection as a resistance gene in natural Drosophila populations. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated blood testosterone concentrations, often accompanied by male-typical behaviors, is a common signalment of mares with granulosa-theca cell tumors (GCTCs), but no definitive information exists regarding the cellular differentiation of tumors associated with androgen secretion. This study was conducted to localize and thereby define the cellular expression of 17α-hydroxylase/17,20-lyase cytochrome P450 (P450c17), the enzyme most directly responsible for androgen synthesis, in 30 GTCTs and control tissues (gonads and adrenal glands) using immuno-histochemistry (IHC). Immuno-reactivity for P450c17 was evident in approximately half of 30 specimens examined, was most consistent in the interstitial cells surrounding existing or developing cysts, and was less intense in cells within cysts in the smaller proportion of specimens where this was observed. In control tissues, the expression of P450c17 was localized primarily in theca interna of normal ovarian follicles, in theca-lutein cells of some corpora lutea, but not in granulosa-lutein cells. Testicular interstitial cells and islands of adreno-cortical cells located in the adrenal medulla of the adrenal cortex further established the specificity of the antisera used. These data provided the first substantive evidence that polyhedral cells identified previously in GTCTs by histopathology have the potential to synthesize and secrete androgens, similar to theca interna and theca lutein cells in normal equine ovaries. © 2010 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the aquatic environment, biotransformation enzymes are established biomarkers for assessing PAH exposure in fish, but little is known about the effect of 17β-estradiol (E2) on these enzymes during exposure to benzo(a)pyrene (BaP). In this study, Nile tilapia (Oreochromis niloticus) were exposed for 3, 5, and 10 days to BaP (300 μg L(-1)) and E2 (5 μg L(-1)). These substances were applied isolated or mixed. In the mixture experiment, fish were analyzed pre- and postexposure in order to better understand whether preexposure to the hormone masks the responses activated by PAH or vice versa. Phase I enzymes ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-depenthylase (PROD), and benzyloxyresorufin-O-debenzylase (BROD) activities as well as the phase II enzyme glutathione S-transferase (GST) were analyzed. Isolated E2 treatment decreased EROD activity after 3 days, but this enzyme activity returned to control values after 5 and 10 days of exposure. Isolated BaP treatment significantly induced EROD activity after 3 and 5 days, and the activity returned to control levels after ten exposure days. Combined treatment (E2 + Bap) significantly increased EROD activity, both in the pre- and postexposure. This increase was even higher than in the isolated BaP treatment, suggesting a synergism between these two compounds. When E2 and BaP were used singly, they did not change BROD and PROD activities. However, combined treatment (E2 + Bap) significantly increased PROD activity. Isolated BaP treatment increased GST activity after 10 days. However, this response was not observed in the mixture treatment, suggesting that E2 suppressed the GST induction modulated by BaP. The results put together indicated that E2 altered the biotransformation pathway regarding enzymes activated by BaP in Nile tilapia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic oxidation of chlorhexidine (CHX, a strong microbicidal agent) mediated by ironporphyrins has been investigated by using hydrogen peroxide, mCPBA, tBuOOH, or NaOCl as oxidant. All of these oxygen donors yielded p-chloroaniline (pCA) as the main product. The higher pCA yields amounted to 71% in the following conditions: catalyst/oxidant/substrate molar ratio of 1:150:50, aqueous medium, FeTMPyP as catalyst. The medium pH also had a strong effect on the pCA yields; in physiological pH, formation of this product was specially favored in the presence of the catalysts, with yields 58% higher than those achieved in control reactions. This provided strong evidence that CHX is metabolized to pCA upon ingestion. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 oxidoreductase (POR) supplies electrons from NADPH to steroid and drug metabolizing reactions catalyzed by the cytochrome P450s located in endoplasmic reticulum. Mutations in human POR cause a wide spectrum of disease ranging from disordered steroidogenesis to sexual differentiation. Previously we and others have shown that POR mutations can lead to reduced activities of steroidogenic P450s CYP17A1, CYP19A1 and CYP21A1. Here we are reporting that mutations in the FMN binding domain of POR may reduce CYP3A4 activity, potentially influencing drug and steroid metabolism; and the loss of CYP3A4 activity may be correlated to the reduction of cytochrome b(5) by POR. Computational molecular docking experiments with a FMN free structural model of POR revealed that an external FMN could be docked in close proximity to the FAD moiety and receive electrons donated by NADPH. Using FMN supplemented assays we have demonstrated restoration of the defective POR activity in vitro.