77 resultados para CSRm
Resumo:
介绍了兰州重离子加速器冷却储存环(HIRFL-CSR)CSRm引出kicker磁铁的物理设计、参数计算以及结构设计和加工。为了减小电感,使上升时间达到要求,CSRm引出kicker磁铁采用分布式的传输线方案,同时将无感电容与磁铁并联以满足匹配的问题。磁铁用单匝线圈和铁氧体铁芯来降低电感、减少涡流损耗,并采取两台电源成对供电、导体一端共地的结构形式消除杂散电感和轴向场,这种方式不但消除了过桥的不利影响,而且可通过调节导体间距离方便的调节磁场均匀区宽度和磁铁电感。完成设计后磁铁电感小于1μH,在140 mm范围内磁场均匀度好于±0.5%,最高磁场达到0.038 T,最大峰值激磁电流约为2.5 kA。
Resumo:
文章涉及兰州重离子加速器冷却储存环(HIRFL CSR)的磁场测量系统。对霍尔片点测量系统、积分长线圈测量系统和谐波线圈测量系统的构成、控制与获取系统,以及新建成设备和探头的结构特点、参数作了详细描述。本测磁系统的精度和重复性完全满足CSR大型高精度磁铁测量的需要,已经完成了对CSRm注入线所有二极磁铁和四极磁铁的测量,正在进行其它各类磁铁的测量。
Resumo:
对HIRFL CSR工程的主环(CSRm)的共振慢引出进行了设计,并采用 Winagile程序对引出过程进行了初步的计算机模拟。主环慢引出采用幅度和动量选择引出机制,其引出通道和快引出通道相同。采用了1/3整数共振慢引出机制来获得约 1 s 的较均匀的引出束流,该引出束流的水平发射度小于 1πmm·mrad。
Resumo:
介绍了兰州重离子冷却储存环主环(CSRm)的改进W型二极磁铁和实验环(CSRe)C型二极磁铁的磁场计算和物理设计,在降低了磁铁造价和运行费用的前提下设计参数达到或超过了物理要求.根据样机的加工和检测结果来看,所有的磁场计算和物理设计的结果是可靠的.
Resumo:
兰州重离子加速器冷却储存环(HIRFL CSR)由一个主环(CSRm)和实验环(CSRe)构成.两个储存环的束流注入与引出都需要借助于切割磁铁的导向来完成.介绍了CSR的切割磁铁的物理设计和二维场计算.
Resumo:
国家重大科学工程HIRFL CSR冷却储存环计划主环CSRm利用已有的HIRFL作为注入器 ,为了更好地利用HIRFL加速器的能力 ,对这两台加速器的匹配在原来的初步考虑的基础上进行了较为详细的研究 ,提出了分别利用HIR FL自己的注入器SFC单独注入到CSR以及SFC加上主加速器SSC注入到CSR的两套方案 ,既可以提高HIRFL与CSR的总传输效率 ,又可以在SFC与CSR联合运行的同时使SSC与另建的小回旋加速器组合加速质子 ,从而充分提高HIRFL的运行效率
Resumo:
介绍了兰州重离子加速器冷却储存环 (HIRFL CSRm)中束流位置测量系统设计的基本原理、PICKUP探针参数的选择以及有关物理量的计算。并完成了桌上实验 ,得出了有关结论。
Resumo:
A pilot experiment of mass measurement was performed at CSRe with the method of isochronous mass spectrometry. The secondary fragments produced via RIBLL2 with the primary beam of 400 MeV/u, Ar-36 delivered by CSRm were injected into CSRe. The revolution periods of the stored ions, which depend on the mass-to-charge ratios of the stored ions, were measured with a time-of-flight detector system. The results show that the mass resolution around 8 x 10(-6) for Delta m/m is achieved.
Resumo:
The construction and commissioning of HIRFL-CSR were finished in 2007. From 2000 to 2005 the subsystem and key devices of CSR were successfully fabricated, such as magnet, power supply, UHV system, e-cooler, electric-static deflector with the septum of 0.1 mm, and the fast-pulse kicker with the rise time of 150 ns. After that the CSR commissioning activities were performed in 2006 and 2007, including the accumulation of those heavy ions of C, Ar, Kr and Xe by the combination of stripping injection (STI) or multiple multi-turn injection (MMI) and e-cooling with a hollow e-beam, wide energy-range synchrotron ramping by changing the RF harmonic-number at mid-energy, the beam stacking in the experimental ring CSRe, the RIBs mass-measurement with the isochronous-mode in CSRe by using the time-of-flight method, and the ion beam slow-extraction from CSRm.
Resumo:
Cooler Storage Ring (CSR) of Heavy Ion Research Facility in Lanzhou (HIRFL) consists of a main ring (CSRm) and an experimental ring (CSRe). Two particular C-type dipoles with embedded windings are used in the injection beam line of CSRm. They also act as the prototype dipoles of CSRe. The windings are designed to improve the field quality by their trimming current. The current impacts on field homogeneity and multipole components are investigated by a hall sensor and a long coil, respectively. The experiment shows that a field homogeneity of +/- 1.0 x 10(-3) can be reached by adjusting the trimming currents, though the multipole components change correspondingly. In our case, the quadrupole component is decreased to a low level with the octupole, decapole and 12-pole ones increased slightly when the trimming current is optimized.
Resumo:
The magnet design, fabrication, and measurement of HIRFL-CSR (Heavy Ion Research Facility in Lanzhou Cooling Storage Ring) are presented. All magnets will be laminated And welded with an armor-coated surface between two big endplates made of sticking glue 0.5 mm-thick sheets. The dipole of CSRm was chosen an H type with an air circle on the pole to improve the field uniformity. The dipole of CSRe was chosen the C type with an air circle and two air slots on the pole to improve the field homogeneity. Its reproducibility of magnet to magnet was adjusted with inserting small laminating pieces before demountable pole ends to reach less than +/- 2 x 10(-4) at optimized field level. CSRm quadrupoles diameter is 170 mm and has two different lengths, and its endplates were made with punching pieces after coating with epoxy glue, there is chamfered directly on the pole ends to reduce 12th-order contribution of field and without the demountable pole ends. CSRe main quadrupoles diameter is 240 mm and has two different lengths, and its endplates were also made with punching pieces coated with epoxy glue, there is also chamfered directly on the pole ends to reduce 12th-order contribution of field like CSRm.
Resumo:
With the construction of the new Radioactive Ion Beam Line in Lanzhou (RIBLL II) which connects the CSRm and the CSRe, an experimental setup for physics research is highly required. A large area neutron detection wall is the main part of the setup. This paper introduced the detection principle of the neutron detection wall and the Monte-Carlo simulation of its design under the environment of the Geant4 toolkit. We presented the final design with the optimized parameters and the performance of the wall.
Resumo:
The commissioning of the cooler storage rings (CSR) was successful, and the facility provides new possibilities for atomic physics with highly charged ions. Bare carbon, argon ions, were successfully stored in the main ring CSRm, cooled by cold electron beam, and accelerated up to 1 GeV/u. Heavier ions as Xe44+ and Kr28+ were also successfully stored in the CSRs. Both of the rings are equipped with new generation of electron coolers which can provide different electron beam density distributions. Electron-ion interactions, high precision X-ray spectroscopy, complete kinematical measurements for relativistic ion-atom collisions will be performed at CSRs. Laser cooling of heavy ions are planned as well. The physics programs and the present status will be summarized.
Resumo:
The status of the HIRFL (Heavy Ion Facility in Lanzhou) - Cooler Storage Ring (CSR) at the IMP is reported. The main physics goals at the HIRFL-CSR are the researches on nuclear structure and decay property, EOS of nuclear matter, hadron physics, highly charged atomic physics, high energy density physics, nuclear astrophysics, and applications for cancer therapy, space industries, materials and biology sciences. The HIRFL-CSR is the first ion cooler-storage-ring system in China, which consists of a main ring (CSRm), an experimental ring (CSRe) and a radioactive beamline (RIBLL2). The two existing cyclotrons SFC (K=70) and SSC (K=450) are used as its injectors. The 7MeV/u12C6+ ions were stored successfully in CSRm with the stripping injection in January 2006. After that, realized were the accelerations of C-12(6+), Ar-36(18+), Kr-78(28+) and Xe-129(27+) ions with energies of 1GeV/u, 1GeV/u, 450 MeV/u and 235 MeV/u, respectively, including accumulation, electron cooling and acceleration. In 2008, the first two isochronous mass measurement experiments with the primary beams of Ar-36(18+) and Kr-78(28+) were performed at CSRe with the Delta p/p similar to 10(-5).
Resumo:
为了在CSRm的电子冷却器上进行辐射复合以及双电子复合实验,需要探测能量小于4MeV/u的离子,因此设计了新的置于超高真空环境的CsI(Tl)闪烁探测器,探测器采用的光电倍增管为R7525(Hamamatsu)。介绍了新闪烁探测器的结构,并对其进行了性能测试。测试结果表明,该探测器对高、低能离子均有良好的响应,探测器的信号十分明显。探测器的最高计数率可以达到106ions/s,并且探测器附近的真空度可达10-10Pa量级,能够满足辐射复合与双电子复合实验以及储存环对真空的要求,为今后在CSRm上进行复合实验打下了良好的基础。