871 resultados para COMPLEXING AGENT
Resumo:
The New Zealand green lipped mussel preparation Lyprinol is available without a prescription from a supermarket, pharmacy or Web. The Food and Drug Administration have recently warned Lyprinol USA about their extravagant anti-inflammatory claims for Lyprinol appearing on the web. These claims are put to thorough review. Lyprinol does have anti-inflammatory mechanisms, and has anti-inflammatory effects in some animal models of inflammation. Lyprinol may have benefits in dogs with arthritis. There are design problems with the clinical trials of Lyprinol in humans as an anti-inflammatory agent in osteoarthritis and rheumatoid arthritis, making it difficult to give a definite answer to how effective Lyprinol is in these conditions, but any benefit is small. Lyprinol also has a small benefit in atopic allergy. As anti-inflammatory agents, there is little to choose between Lyprinol and fish oil. No adverse effects have been reported with Lyprinol. Thus, although it is difficult to conclude whether Lyprinol does much good, it can be concluded that Lyprinol probably does no major harm.
Resumo:
The load–frequency control (LFC) problem has been one of the major subjects in a power system. In practice, LFC systems use proportional–integral (PI) controllers. However since these controllers are designed using a linear model, the non-linearities of the system are not accounted for and they are incapable of gaining good dynamical performance for a wide range of operating conditions in a multi-area power system. A strategy for solving this problem because of the distributed nature of a multi-area power system is presented by using a multi-agent reinforcement learning (MARL) approach. It consists of two agents in each power area; the estimator agent provides the area control error (ACE) signal based on the frequency bias estimation and the controller agent uses reinforcement learning to control the power system in which genetic algorithm optimisation is used to tune its parameters. This method does not depend on any knowledge of the system and it admits considerable flexibility in defining the control objective. Also, by finding the ACE signal based on the frequency bias estimation the LFC performance is improved and by using the MARL parallel, computation is realised, leading to a high degree of scalability. Here, to illustrate the accuracy of the proposed approach, a three-area power system example is given with two scenarios.
Resumo:
An adaptive agent improves its performance by learning from experience. This paper describes an approach to adaptation based on modelling dynamic elements of the environment in order to make predictions of likely future state. This approach is akin to an elite sports player being able to “read the play”, allowing for decisions to be made based on predictions of likely future outcomes. Modelling of the agent‟s likely future state is performed using Markov Chains and a technique called “Motion and Occupancy Grids”. The experiments in this paper compare the performance of the planning system with and without the use of this predictive model. The results of the study demonstrate a surprising decrease in performance when using the predictions of agent occupancy. The results are derived from statistical analysis of the agent‟s performance in a high fidelity simulation of a world leading real robot soccer team.
Resumo:
Emerging evidence supports that prostate cancer originates from a rare sub-population of cells, namely prostate cancer stem cells (CSCs). Conventional therapies for prostate cancer are believed to mainly target the majority of differentiated tumor cells but spare CSCs, which may account for the subsequent disease relapse after treatment. Therefore, successful elimination of CSCs may be an effective strategy to achieve complete remission from this disease. Gamma-tocotrienols (-T3) is one of the vitamin-E constituents which have been shown to have anticancer effects against a wide-range of human cancers. Recently, we have reported that -T3 treatment not only inhibits prostate cancer cell invasion but also sensitizes the cells to docetaxel-induced apoptosis, suggesting that -T3 may be an effective therapeutic agent against advanced stage prostate cancer. Here, we demonstrate for the first time that -T3 can down-regulate the expression of prostate CSC markers (CD133/CD44) in androgen independent (AI) prostate cancer cell lines (PC-3 & DU145), as evident from western blotting analysis. Meanwhile, the spheroid formation ability of the prostate cancer cells was significantly hampered by -T3 treatment. In addition, pre-treatment of PC-3 cells with -T3 was found to suppress tumor initiation ability of the cells. More importantly, while CD133-enriched PC-3 cells were highly resistant to docetaxel treatment, these cells were as sensitive to -T3 treatment as the CD133-depleted population. Our data suggest that -T3 may be an effective agent in targeting prostate CSCs, which may account for its anticancer and chemosensitizing effects reported in previous studies.
Resumo:
In open railway access markets, a train service provider (TSP) negotiates with an infrastructure provider (IP) for track access rights. This negotiation has been modeled by a multi-agent system (MAS) in which the IP and TSP are represented by separate software agents. One task of the IP agent is to generate feasible (and preferably optimal) track access rights, subject to the constraints submitted by the TSP agent. This paper formulates an IP-TSP transaction and proposes a branch-and-bound algorithm for the IP agent to identify the optimal track access rights. Empirical simulation results show that the model is able to emulate rational agent behaviors. The simulation results also show good consistency between timetables attained from the proposed methods and those derived by the scheduling principles adopted in practice.
Resumo:
Open access reforms to railway regulations allow multiple train operators to provide rail services on a common infrastructure. As railway operations are now independently managed by different stakeholders, conflicts in operations may arise, and there have been attempts to derive an effective access charge regime so that these conflicts may be resolved. One approach is by direct negotiation between the infrastructure manager and the train service providers. Despite the substantial literature on the topic, few consider the benefits of employing computer simulation as an evaluation tool for railway operational activities such as access pricing. This article proposes a multi-agent system (MAS) framework for the railway open market and demonstrates its feasibility by modelling the negotiation between an infrastructure provider and a train service operator. Empirical results show that the model is capable of resolving operational conflicts according to market demand.
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.