959 resultados para CO OXIDATION
Resumo:
We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase.
Resumo:
A mechanism of CO oxidation by a thin surface oxide of Rh supported on ceria is proposed: CO is oxidized by the Rh-oxide film, which is subsequently reoxidized by a ceria surface O atom. The proposed mechanism is supported by in situ Raman spectroscopic investigations.
Resumo:
The electrochemical deposition of Ru on Pt(111) electrodes has been investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry in a closed UHV transfer system. At small coverages Ru formed a monatomic commensurate layer, at higher coverage mostly small islands with a bilayer height were detected. When the Pt was almost completely covered by Ru, three-dimensional clusters developed. The island structure of Ru changed upon electrooxidation of CO, reflecting an enhanced mobility of Ru. Adsorption and electrooxidation of CO have been studied on such Ru-modified Pt(111) electrodes using cyclic voltammetry and in situ FTIR spectroscopy. Compared to the pure metals, the Ru-CO bond is weakened, the Pt-CO bond strengthened on the modified electrodes. The catalytic activity of the Ru/Pt(111) electrode toward CO adlayer oxidation is higher than that of pure Ru and a PtRu alloy (50:50). It is concluded that the electrooxidation of CO takes place preferentially at the Ru islands, while CO adsorbed on Pt migrates to them. © 1999 American Chemical Society.
Resumo:
Highly efficient In2O3-Co3O4 catalysts were prepared for ultralow-temperature CO oxidation by simultaneously tuning the CO adsorption strength and oxygen activation over a Co3O4 surface, which could completely convert CO to CO2 at temperatures as low as -105 degrees C compared to -40 degrees C over pure Co3O4, with enhanced stability.
Resumo:
Understanding and then designing efficient catalysts for CO oxidation at low temperature is one of the hottest topics in heterogeneous catalysis. Among the existing catalysts. Co3O4 is one of the most interesting systems: Morphology-controlled Co3O4 exhibits exceedingly high activity. In this study, by virtue of extensive density functional theory (OFT) calculations, the favored reaction mechanism in the system is identified. Through careful analyses on the energetics of elementary reactions on Co3O4(1 1 0)-A, Co3O4(1 1 0)-B, Co3O4(1 1 1) and Co3O4(1 0 0), which are the commonly exposed surfaces of Co3O4, we find the following regarding the relation between the activity and structure: (i) Co3+ is the active site rather than Co2+: and (ii) the three-coordinated surface oxygen bonded with three Co3+ may be slightly more reactive than the other two kinds of lattice oxygen, that is, the two-coordinated 0 bonded with one Co2+ and one Co3+ and the three-coordinated 0 bonded with one Co2+ and two Co3+. Following the results from Co3O4, we also extend the investigation to MnO2(1 1 0), Fe3O4(1 1 0), CuO(1 1 0) and CuO(1 1 1), which are the common metal oxide surfaces, aiming to understand the oxides in general. Three properties, such as the CO adsorption strength, the barrier of CO reacting with lattice 0 and the redox capacity, are identified to be the determining factors that can significantly affect the activity of oxides. Among these oxides, Co3O4 is found to be the most active one, stratifying all the three requirements. A new scheme to decompose barriers is introduced to understand the activity difference between lattice O-3c and O-2c on (1 1 0)-B surface. By utilizing the scheme, we demonstrate that the origin of activity variance lies in the geometric structures. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Structures and catalytic activities of Au thin films supported at anatase TiO(2)(101)) and a Au substrate are studied by using density functional theory calculations. The results show that O(2) can hardly adsorb at flat and stepped Au thin films, even supported by fully reduced TiO(2)(101) that can highly disperse Au atoms and offer strong electronic promotion. Interestingly, in both oxide-supported and pure Au. systems, wire-structured Au can adsorb both CO and O(2) rather strongly, and kinetic analysis suggests its high catalytic activity for low-temperature CO oxidation. The d-band center of Au at the catalytic site is determined to account for the unusual activity of the wire-structured film. A generalized structural model based on the wire-structured film is proposed for active Au, and possible support effects are discussed: Selected oxide surfaces can disperse Au atoms and stabilize the formation of a filmlike structure; they may also serve as a template for the preferential arrangement of Au atoms in a wire structure under low Au coverage.
Resumo:
We have performed ab initio density functional theory calculations with the generalized gradient approximation to investigate CO oxidation on Ru(0001). Several reaction pathways and transition states are identified. A much higher reaction barrier compared to that on Pt(111) is determined, confirming that the Ru is very inactive for CO oxidation under UHV conditions. The origin of the reaction barrier was analyzed. It is found that in the transition state the chemisorbed O atom sits in an unfavorable bonding site and a significant competition for bonding with the same substrate atoms occurs between the CO and the chemisorbed O, resulting in the high barrier. Ab initio molecular dynamics calculations show that the activation of the chemisorbed O atom from the initial hcp hollow site (the most stable site) to the bridge site is the crucial step for the reaction. The CO oxidation on Ru(0001) via the Eley-Rideal mechanism has also been investigated. A comparison with previous theoretical work has been made. (C) 2000 American Institute of Physics. [S0021-9606(00)31223-5].
Resumo:
CO oxidation on Pt(111) is studied with ab initio density functional theory. The low energy pathway and transition state for the reaction are identified. The key event is the breaking of an O-metal bond prior to the formation of a chemisorbed CO2 molecule. The pathway can be rationalized in terms of competition of the O and C atoms for bonding with the underlying surface, and the predominant energetic barrier is the strength of the O-metal bond.
CO Oxidation and the CO/NO Reaction on Pd(110) Studied Using "Fast" XPS and a Molecular Beam Reactor
Resumo:
Several simple gold compounds and their physical mixtures with TiO2 Were tested for low temperature CO oxidation. No true catalytic activity was found for gold precursors on their own, although both Au2O3 and Au(OH)(3) react well with CO even at room temperature in a non-catalytic manner. Despite that catalytic activity was obtained by physically mixing Au(OH)(3) or Au2O3 with TiO2 and the results further emphasise the importance of a good contact between the gold and the support for good CO oxidation activity. (c) 2005 Published by Elsevier.
Resumo:
A number of Au/TiO2 catalysts have been prepared by a variety of methods in order to assess the affect of catalysts preparation methods on performance, catalyst contamination and the interplay between them. Their activity was studied in a pulse flow microreactor and it was found that preparation methods designed to eliminate impurities lead to more active samples. The effect of chlorine is often cited to be detrimental in the literature, but we have quantified it using XPS. It was found that the activity decreased in a nearly linear fashion with an increasing amount of this element at the surface. It is generally considered that catalysts prepared by the incipient wetness (IW) technique are ineffective for CO oxidation, but we show here that, by appropriate preparation methods, high activity IW catalysts can be made.