183 resultados para CFRP invecchiamento


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The machining of carbon fiber reinforced polymer (CFRP) composite presents a significant challenge to the industry, and a better understanding of machining mechanism is the essential fundament to enhance the machining quality. In this study, a new energy based analytical method was developed to predict the cutting forces in orthogonal machining of unidirectional CFRP with fiber orientations ranging from 0° to 75°. The subsurface damage in cutting was also considered. Thus, the total specific energy for cutting has been estimated along with the energy consumed for forming new surfaces, friction, fracture in chip formation and subsurface debonding. Experiments were conducted to verify the validity of the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'elaborato tratta, inizialmente, delle generalità dei materiali compositi, facendo particolare riferimento agli elementi che contraddistinguono i materiali protagonisti di questa campagna sperimentale (resine epossidiche, fibre, IMR, binder). Successivamente si passa alla trattazione delle varie tecniche usate per produrre un componente in materiale composito, soffermandosi maggiormente sulla tecnica dell’HP-RTM. Inoltre, poichè nell’elaborazione dei risultati ottenuti sono utilizzati curve gaussiane e istogrammi, è inserito un capitolo con informazioni generali sulla statistica e sulle principali distribuzioni di probabilità. Sono, infine, elencati e spiegati i vari materiali utilizzati, con le varie apparecchiature e i due metodi di invecchiamento, igroscopico e termico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: We present an optical sensing methodology to estimate the fatigue damage stateof structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanofibrous membranes are a promising material for tailoring the properties of laminated CFRP composites by embedding them into the structure. This project aimed to understand the effect of number, position and thickness of nanofibrous modifications specifically on the damping behaviour of the resulting nano-modified CFRP composite with an epoxy matrix. An improvement of damping capacity is expected to improve a composites lifetime and fatigue resistance by prohibiting the formation of microcracks and consequently hindering delamination, it also promises a rise in comfort for a range of final products by intermission of vibration propagation and therefore diminution of noise. Electrospinning was the technique employed to produce nanofibrous membranes from a blend of polymeric solutions. SEM, WAXS and DSC were utilised to evaluate the quality of the obtained membranes before they were introduced, following a specific stacking sequence, in the production process of the laminate. A suitable curing cycle in an autoclave was applied to mend the modifications together with the matrix material, ensuring full crosslinking of the matrix and therefore finalising the production process. DMA was exercised in order to gain an understanding about the effects of the different modifications on the properties of the composite. During this investigation it became apparent that a high number of modifications of laminate CFRP composites, with an epoxy matrix, with thick rubbery nanofibrous membranes has a positive effect on the damping capacity and the temperature range the effect applies in. A suggestion for subsequent studies as well as a recommendation for the production of nano-modified CFRP structures is included at the end of this document.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’elaborato mira a descrivere la tecnologia e le implicazioni chimico-fisiche e sensoriali legati alla produzione dei vini della denominazione Jerez, alcune delle cui caratteristiche dipendono dal processo di invecchiamento biologico, dovuto al metabolismo di alcuni lieviti in grado di svilupparsi in colonie superficiali a costituire un velo di natura polisaccaridica. Dopo un breve excursus sulla storia della zona viticola dell'Andalusia e l’etimologia della parola "Jerez", si è fornita la descrizione delle condizioni pedologiche e climatiche della zona in questione. In seguito, si descrive il disciplinare della D.O. Jerez , la differenziazione dei vini Generosos, definizione e descrizione del metodo "Criaderas y Solera" e il suo funzionamento (saca y rocio). Sono descritti, inoltre, i fenomeni chimici che presiedono la formazione, lo sviluppo e la dissoluzione del velo di flor, soffermandosi sulla generazione o evoluzione di talune molecole responsabili delle caratteristiche sensoriali dei prodotti finali, includendo anche informazioni relative all’invecchiamento ossidativo di alcune tipologie di vini Jerez. Una particolare attenzione è riservata alla tecnologia adottata nei grandi enopoli della provincia di Cadiz, allo scopo di favorire le trasformazioni metaboliche dianzi accennate. Un ulteriore capitolo è stato dedicato alla trattazione dei dati statistici ed economici relativi al mercato andaluso, import ed export dello Jerez e l'andamento del commercio internazionale di questa tipologia di vino. Da ultimo, l'elaborato illustra brevemente altre tipologie di vino prodotte con invecchiamento biologico (Jura e Vernaccia di Oristano).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon Fiber Reinforced Polymers (CFRPs) are well renowned for their excellent mechanical properties, superior strength-to-weight characteristics, low thermal expansion coefficient, and fatigue resistance over any conventional polymer or metal. Due to the high stiffness of carbon fibers and thermosetting matrix, CFRP laminates may display some drawbacks, limiting their use in specific applications. Indeed, the overall laminate stiffness may lead to structural problems arising from their laminar structure, which makes them susceptible to structural failure by delamination. Moreover, such stiffness given by the constituents makes them poor at damping vibration, making the component more sensitive to noise and leading, at times, to delamination triggering. Nanofibrous mat interleaving is a smart way to increase the interlaminar fracture toughness: the use of thermoplastic polymers, such as poly(ε- caprolactone) (PCL) and polyamides (Nylons), as nonwovens are common and well established. Here, in this PhD thesis, a new method for the production of rubber-rich nanofibrous mats is presented. The use of rubbery nanofibers blended with PCL, widely reported in the literature, was used as matrix tougheners, processing DCB test results by evaluating Acoustic Emissions (AE). Moreover, water-soluble electrospun polyethylene oxide (PEO) nanofibers were proposed as an innovative method for reinforcing layers and hindering delamination in epoxy-based CFRP laminates. A nano-modified CFRP was then aged in water for 1 month and its delamination behaviour compared with the ones of the commercial laminate. A comprehensive study on the use of nanofibers with high rubber content, blended with a crystalline counterpart, as enhancers of the interlaminar properties were then investigated. Finally, PEO, PCL, and Nylon 66 nanofibers, plain or reinforced with Graphene (G), were integrated into epoxy-matrix CFRP to evaluate the effect of polymers and polymers + G on the laminate mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study, which is undertaken in cooperation with Riba-COMPOSITES, investigates the effects of hygroscopic ageing on the Interlaminar Shear Strength and Glass Transition Temperature of short-beams made of carbon fibre reinforced polymer (CFRP) composites provided by two different vendors. The materials have the same weave pattern but differ in the epoxy resin formulation. The tests are done in accordance with ASTM. Accelerated ageing techniques are carried out by immersion of the specimens in deionized water at 70°C for different periods of time, developing different degrees of ageing. The results of the tests confirm that hygroscopic ageing causes a loss of properties and a depression of the glass transition temperature in both the materials. However, since one of the two materials shows more constant property degradation, its behaviour in service conditions should be more easily predictable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of adhesively bonded carbon fiber reinforced polymers (CFRP) is well established to repair metallic structural elements in the aerospace industry for more than three decades. Despite a few exceptions, this technology has yet not been exploited for the steel construction industry where there is a great need to rehabilitate old metallic bridges. For instance, in Europe more than 30% of the railway bridge stock operated for more than 100 years. These bridges are made of old mild steel or puddle iron that exhibits poor behaviour due to the quality of the material itself and degradation caused by the long-term loading or environmental effects. The modest results for Steel/CFRP joints obtained may be due to the type of adhesive used. In fact, most of the previous studies utilized brittle adhesives specially developed for concrete structures. Recent ductile adhesives that made for the automotive industry for metallic joints should be more appropriate. In this study, an experimental investigation on the behaviour of CFRP/steel adhesively bonded joints is presented. A comparison between brittle adhesives and ductile adhesives is conducted. The results show that the ductile adhesives achieve much higher performance than the brittle ones. The brittle adhesives provide more stiffness to the adhesive joint. In the specimens with the ductile adhesives, the failure pattern started by yielding the steel bars first then the adhesive joint which is promising since it can facilitate the design significantly if the steel yielding can be used as a design criterion. The main disadvantage of ductile adhesives is they are usually more expensive than brittle ones. In order to solve this issue, bi-adhesive joints, in which the joint is mainly made of (low cost) brittle adhesive and ductile adhesive in the stress concentration region, are proposed. The results revealed very high improvement up to the yielding strength of the steel bars and with a balanced stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reinforcement methods used to restore or increase the bearing capacity of metal structures are based on the application of steel plates to be bolted or welded to the original structure, which can cause problems to the integrity of the original structure. These difficulties can be overcome with the introduction of fiber-reinforced composite materials. FRPs are characterized by high strength to weight ratio, and they are very resistant to corrosion. In this dissertation a cracked steel I-beam reinforced with Carbon Fiber-Reinforced Polymer will be studied by performing a numerical evaluation of the structure with the commercial Finite Element Method software ABAQUS. The crack propagation will be computed using XFEM, while the debonding of the reinforcement layer will be found by considering a cohesive contact interface between the beam and the CFRP plate. The results will show the efficiency of the strengthening method in increasing the load carrying capacity of the cracked beam, and in reducing the crack opening of the initial notch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I compositi rinforzati con fibre di carbonio (CFRC) stanno sempre più sostituendo i materiali convenzionali in applicazioni che necessitano di alte prestazioni meccaniche, grazie alla loro leggerezza e alle eccellenti proprietà meccaniche. Dato l'enorme incremento della loro produzione e delle loro applicazioni, uno dei principali problemi risiede nel loro smaltimento, sia a fine vita che degli scarti e sfridi di lavorazione. Inoltre, la produzione di fibre di carbonio (CF) necessita di un elevato fabbisogno energetico (183-286 MJ/kg), pertanto la possibilità di recupero dei compositi in ottica di riutilizzo delle CF sembra essere un'opzione promettente in termini di sostenibilità ed economia circolare. Nell’ottica di identificare una metodologia per recuperare e riciclare questi materiali, il lavoro della presente tesi di laurea sperimentale, svolto in collaborazione con Leonardo SpA, è stato quello di studiare e ottimizzare il processo di pirogassificazione su CRFP aeronautici.