211 resultados para C27 sterane


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we use compound-specific hydrogen isotope data of aquatic and terrestrial lipid biomarkers from precisely dated annually laminated sediments from Lake Meerfelder Maar (MFM) in Western Germany to reconstruct decadal resolved hydroclimatic changes during the Younger Dryas. We show that cooling at MFM begun synchronous to the onset of cooling in Greenland at 12.850 years BP. Major environmental changes at MFM however took place 170 years later as a result of substantially drier conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern microbial mats are widely recognized as useful analogs for the study of biogeochemical processes relevant to paleoenvironmental reconstruction in the Precambrian. We combined microscopic observations and investigations of biomarker composition to investigate community structure and function in the upper layers of a thick phototrophic microbial mat system from a hypersaline lake on Kiritimati (Christmas Island) in the Northern Line Islands, Republic of Kiribati. In particular, an exploratory incubation experiment with 13C-labeled bicarbonate was conducted to pinpoint biomarkers from organisms actively fixing carbon. A high relative abundance of the cyanobacterial taxa Aphanocapsa and Aphanothece was revealed by microscopic observation, and cyanobacterial fatty acids and hydrocarbons showed 13C-uptake in the labeling experiment. Microscopic observations also revealed purple sulfur bacteria (PSB) in the deeper layers. A cyclic C19:0 fatty acid and farnesol were attributed to this group that was also actively fixing carbon. Background isotopic values indicate Calvin-Benson cycle-based autotrophy for cycC19:0 and farnesol-producing PSBs. Biomarkers from sulfate-reducing bacteria (SRB) in the top layer of the mat and their 13C-uptake patterns indicated a close coupling between SRBs and cyanobacteria. Archaeol, possibly from methanogens, was detected in all layers and was especially abundant near the surface where it contained substantial amounts of 13C-label. Intact glycosidic tetraether lipids detected in the deepest layer indicated other archaea. Large amounts of ornithine and betaine bearing intact polar lipids could be an indicator of a phosphate-limited ecosystem, where organisms that are able to substitute these for phospholipids may have a competitive advantage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipids are used for the evaluation of the different organic matter contributions in the north eastern Norwegian sea (M23258 site; 75ºN, 14ºE) over the last 15,000 years. Development of a mass balance model based on the down core quantification of the C37 alkenones, the odd carbon numbered n-alkanes (Aodd) and the unresolved complex mixture of hydrocarbons (UCM) has allowed three main organic matter inputs involving marine, continental and ancient reworked organic matter to be recognized. The model shows a good agreement between measured and reconstructed TOC values. Similarly, a strong parallelism is observed between predicted components such as marine TOC and carbonate content (CaCO3), which was determined independently. Representation of the model results within a time-scale based on 15 AMS-14C measurements shows that the main changes in organic matter constituents are coincident with the major climatic events of the last 15,000 a. Thus, the predominance of reworked organic matter is characteristic of Termination Ia (up to 70%), continental organic matter was dominant during the Bølling-Allerød (B-A) and Younger Dryas (YD) periods (about 85%) and a strong increase of marine organic matter occurred in the Holocene (between 50 and 75%). This agreement reflects the main hydrographic changes that determined the deposition of sedimentary materials during the period studied: ice-rafted detritus from the Barents continental platform, ice-melting waters from the Arctic fluvial system discharging into the Barents sea and dominance of north Atlantic currents, respectively. In this respect, the high-resolution down core record resulting from the mass balance and lipid measurements allows the identification of millennial-scale events such as the increase of reworked organic matter at the final retreat of the Barents ice sheet at the end of the deglaciation period (Termination Ib).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selective degradation of organic matter in sediments is important for reconstructing past environments and understanding the carbon cycle. Here, we report on compositional changes between and within lipid classes and kerogen types (represented by palynomorph groups) in relation to the organic matter flux to the sea floor and oxidation state of the sediments since the early Holocene for central Eastern Mediterranean site ABC26. This includes the initially oxic but nowadays anoxic presapropelic interval, the still unoxidised lower part of the organic rich S1 sapropel, its postdepositionally oxidised and nowadays organic-poor upper part as well as the overlying postsapropelic sediments which have always been oxic. A general ~ 2.3 times increase in terrestrial and marine input during sapropel formation is estimated on the basis of the total organic carbon (TOC), pollen, spore, dinoflagellate cyst, n-alkane, n-alkanol and n-alkanoic acid concentration changes in the unoxidised part of the sapropel. The long-chain alkenones, 1,15 diols and keto-ols, loliolides and sterols indicate that some plankton groups, notably dinoflagellates, may have increased much more. Apart from the terrestrial and surface water contributions to the sedimentary organic matter, anomalous distributions and preservation of some C23-C27 alkanes, alkanols and alkanoic acids have been observed, which are interpreted as a contribution by organisms living in situ. Comparison of the unoxidised S1 sapropel with the overlying oxidised sapropel and the organic matter concentration profiles in the oxidised postsapropelic sediments demonstrates strong and highly selective aerobic degradation of lipids and palynomorphs. There seems to be a fundamental difference in degradation kinetics between lipids and pollen which may be possibly related with the absence of sorptive preservation as a protective mechanism for palynomorph degradation. The n-alkanes, Impagidinium, and Nematosphaeropsis are clearly more resistant than TOC. The n-alkanols and n-carboxylic acids are about equally resistant whereas the pollen, all other dinoflagellate cysts and other lipids appear to degrade considerably faster, which questions the practice of normalising to TOC without taking diagenesis into account. Selective degradation also modifies the relative distributions within lipid classes, whereby the longer-chain alkanes, alcohols and fatty acids disappear faster than their shorter-chain equivalents. Accordingly, interpretation of lipid and palynomorph assemblages in terms of pre- or syndepositional environmental change should be done carefully when proper knowledge of the postdepositional preservation history is absent. Two lipid-based preservation proxies are tested the diol-keto-ol oxidation index based on the 1,15C30 diol and keto-ols (DOXI) and the alcohol preservation index (API) whereby the former seems to be the most promising.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Siwalik paleosol and Bengal Fan sediment samples were analyzed for the abundance and isotopic composition of n-alkanes in order to test for molecular evidence of the expansion of C4 grasslands on the Indian subcontinent. The carbon isotopic compositions of high-molecular-weight alkanes in both the ancient soils and sediments record a shift from low d13C values (ca. -30 per mil) to higher values (ca. -22 per mil) prior to 6 Ma. This shift is similar in magnitude to that recorded by paleosol carbonate and fossil teeth, and is consistent with a relatively rapid transition from dominantly C3 vegetation to an ecosystem dominated by C4 plants typical of semi-arid grasslands. The n-alkane values from our paleosol samples indicate that the isotopic change began as early as 9 Ma, reflecting either a growing contribution of C4 plants to a dominantly C3 biomass or a decrease in water availability to C3 plants. Molecular and isotopic analyses of other compounds, including n-alcohols and low-molecular weight n-alkanes indicate paleosol organic matter contains contributions from a mixture of sources, including vascular plants, algae and/or cyanobacteria and microorganisms. A range of inputs is likewise reflected in the isotopic composition of the total organic carbon from these samples. In addition, the n-alkanes from two samples show little evidence for pedegenic inputs and we suggest the compounds were derived instead from the paleosol's parent materials. We suggest the record of vegetation in ancient terrestrial ecosystems is better reconstructed using isotopic signatures of molecular markers, rather than bulk organic carbon. This approach provides a means of expanding the spatial and temporal records of C4 plant biomass which will help to resolve possible tectonic, climatic or biological controls on the rise of this important component of the terrestrial biosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic geochemical and visual kerogen analyses were carried out on approximately 50 samples from Leg 81 (Rockall Plateau, North Atlantic). The sediments are from four sites (Sites 552-555), Pleistocene to Paleocene in age, and represent significantly different depositional environments and sources of organic matter. The Pleistocene glacial-interglacial cycles show differences in sedimentary organic matter based on Rock-Eval pyrolysis, organic phosphorus, and pyrolysis/mass-spectrometry analyses. Glacial samples contain more organic carbon, with a larger proportion of reworked organic matter. This probably reflects increased erosion of continental and shelf areas as a result of low sea level stands. Inter glacial samples contain a larger proportion of marine organic matter as determined by organic phosphorus and pyrolysis analyses. This immature, highly oxidized marine organic matter may be associated with the skeletal organic matrix of calcareous organisms. In addition, Rock-Eval data indicate no significant inorganic-carbonate contribution to the S3 pyrolysis peak. The Pliocene-Miocene sediments consist of pelagic, biogenic carbonates. The organic matter is similar to that of the Pleistocene interglacial periods; a mixture of oxidized marine organic matter and reworked, terrestrial detritus. The Paleocene-Oligocene organic matter reflects variations in source and depositional factors associated with the isolation of Rockall from Greenland. Paleocene sediments contain primarily terrestrial organic matter with evidence of in situ thermal stress resulting from interbedded lava flows. Late Paleocene and early Eocene organic matter suggests a highly oxidized marine environment, with major periods of deposition of terrestrially derived organic matter. These fluctuations in organic-matter type are probably the result of episodic shallowing and deepening of Rockall Basins. The final stage of Eocene/Oligocene sedimentation records the accelerating subsidence of Rockall and its isolation from terrestrial sources (Rockall and Greenland). This is shown by the increasingly marine character of the organic matter. The petroleum potential of sediments containing more than 0.5% organic carbon is poor because of their thermal immaturity and their highly oxidized and terrestrial organic-matter composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (d13C TOC = -26 to -22 per mil) and long-chain n-alkanes (C27, C29 and C31, d13C = -34 to -29 per mil) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the d15N TN values of the bulk sediment (+4 to +8 per mil) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The d13C values of archaeal biomarker pentamethylicosane (PMI) (-46.4 per mil) and bacterial-sourced hopenes, diploptene and hop-21-ene (-40.9 to -34.7 per mil) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic-geochemical bulk parameter (Total organic carbon contents, C/N ratios and d13Corg values), biogenic opal and biomarkers (n-alkanes, fatty acids, sterols and amino acids) were determined in surface sediments from the Ob and Yenisei estuaries and the adjacent southern Kara Sea. Maximum TOC contents were determined in both estuaries, reaching up to 3 %. Relatively high C/N ratios around 10, light d13Corg values of -26.5 per mil (Yenisei) and -28 to -28.7 per mil (Ob), and maximum concentrations of long-chain n-alkanes of up to about 10 µg/g Sed clearly show the predominance of terrigenous organic matter in the sediments from the estuaries. Towards the open Kara Sea, all p arameters indicate a decrease in terrigenous organic carbon. Brassicasterol as well as the short-chain n-alkanes parallel this trend, suggesting that these biomarkers are probably also related to a terrigenous (fresh-water phytoplankton) source. Amino acid spectra show characteristic trends from the Yenisei Estuary to the open Kara Sea revealing increasing state of degradation. Sedimentary organic matter in the Yenisei Estuary is relatively less degraded compared to the Ob Estuary and the open Kara Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aliphatic hydrocarbon distributions obtained from the natural bitumens of three Leg 75 sediments were compared using computerised gas chromatography-mass spectrometry (C-GC-MS). The kerogens isolated from these sediments were heated in sealed tubes at 330°C using the techniques of hydrous (i.e. heating kerogen in the presence of water) and anhydrous pyrolysis (i.e. heating dry kerogen alone). These experiments were then repeated at a lower temperature (280°C). At 330°C, under anhydrous conditions, considerable destruction of biomarkers in the ancient kerogens (i.e. pre-Tertiary) occurred, whereas with water present significant amounts of hopanes were obtained. However, with more recent kerogens (which contain larger amounts of chemically bound water), both anhydrous and hydrous pyrolysis gave a similar suite of biological markers, in which long chain acyclic isoprenoids (C40) are significant components. Lowering the temperature of pyrolysis to 280°C yielded biological markers under both hydrous and anhydrous conditions for all kerogens. n-Alkenes were not detected in any of the pyrolysates; however, a single unknown triterpene was discovered in several of the hydrous and anhydrous pyrolysates. The results tentatively indicate that the chief value to petroleum research of kerogen hydrous pyrolysis lies in its ability to increase the yield of pyrolysate. High temperature hydrous pyrolysis (280-330°C), under high pressure (2000 psi), does not appear to mimic natural conditions of oil generation. However, this study does not take into account whole rock pyrolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lipids and kerogens of 15 sediment samples from Site 547 (ranging from Pleistocene to Early Jurassic/Triassic) and 4 from Site 545 (Cretaceous) have been analyzed. A strong terrestrial contribution of organic matter was found, and significant autochthonous inputs were also present, especially at Site 545. Both strongly reduced and highly oxidized sediments have been found in the Cenozoic and Jurassic samples of Site 547. On the contrary, all the Cretaceous sections of Sites 547 and 545 are anoxic. Sediments from anoxic paleoenvironments are immature and have a high content of sterenes, diasterenes, steradienes, hopenes, and ßß hopanes. Samples from oxic paleoenvironments are mainly mature and their content of hopenes and steriod structures is below the detection level. Nevertheless, their hopane distributions have the immature ßß homologs as the predominant molecular markers. For Site 545 the most abundant molecular markers are ring A monoaromatic steranes, and their presence is attributed to microbial and chemical transformations during early diagenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidized intervals of five organic-rich Madeira Abyssal Plain (MAP) turbidites deposited during the Miocene, Pliocene, and Pleistocene all displayed comparable major loss of total organic carbon (TOC) (84 ± 3.1%) accompanied by a negative isotopic (d13C) shift ranging from -0.3 to -2.9 per mil. Major but significantly lower loss of total nitrogen (Ntot, 61 ± 7.1%) also occurred, leading to a decrease in TOC relative to Ntot (C/Ntot) and a +1.3 to 2.7 per mil Ntot isotopic (d15N) shift. Compound specific isotopic measurements on plant wax n-alkanes indicate the terrestrial organic component in the unoxidized deposits is 13C-enriched owing to significant C4 contribution. Selective preservation of terrestrial relative to marine organic carbon could account for the d13C behavior of TOC upon oxidation but only if a 13C-depleted component of the bulk terrestrial signal is selectively preserved in the process. Although the C/Ntot decrease and positive d15N shift seems inconsistent with selective terrestrial organic preservation, results from analysis of a Modern eolian dust sample collected in the vicinity indicate these observations are compatible. Regardless of the specific explanation for these isotopic observations, however, our findings provide evidence that paleoreconstruction of properties such as pCO2 using the d13C of TOC is a goal fraught with uncertainty whether or not the marine sedimentary record considered is 'contaminated' with significant terrestrial input. Nonetheless, despite major and selective loss of both marine and terrestrial components as a consequence of postdepositional oxidation, intensive organic geochemical proxies such as the alkenone unsaturation index, UK'37, appear resistant to change and thereby retain their paleoceanographic promise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the molecular composition of a portion of the solvent-soluble organic material (lipid extract), from three organic rich muds (samples 116-717C-22X-1, 80-86 cm, 116-717C-34X-3, 130-135 cm, and 116-717C-55X-1, 65-70 cm). These samples were taken from Hole 717C, located on the Bengal Fan at a position of 0°55.8'S and 81°23.4'E. Both the palaeoenvironmental and digenetic significance of these lipid distributions have been assessed and found to be consistent with their suspected origins, i.e., turbidites from the upper slope of the western Bay of Bengal and the Ganges-Brahmaputra delta.