994 resultados para Book-binding.
Resumo:
Poem "The colours" by E. Van Blon, part 2, p. [65]-66.
Resumo:
"This is a Borzoi book"--T.p. verso.
Resumo:
"Edited by Melville E. Stone Jr. "--Kramer, p. 354.
Resumo:
Cover title : Colonial history.
Resumo:
States or state sequences in neural network models are made to represent concepts from applications. This paper motivates, introduces and discusses a formalism for denoting such representations; a representation for representations. The formalism is illustrated by using it to discuss the representation of variable binding and inference abstractly, and then to present four specific representations. One of these is an apparently novel hybrid of phasic and tensor-product representations which retains the desirable properties of each.
Resumo:
Antigenic peptide is presented to a T-cell receptor (TCR) through the formation of a stable complex with a major histocompatibility complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide's capacity to form a stable complex with a given MHC class II allele, a technique integral to the strategy of vaccine design. These have previously incorporated such computational techniques as quantitative matrices and neural networks. A novel predictive technique is described, which uses molecular modeling of predetermined crystal structures to estimate the stability of an MHC class II-peptide complex. The structures are remodeled, energy minimized, and annealed before the energetic interaction is calculated.
Resumo:
Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.
Resumo:
The binding between peptide epitopes and major histocompatibility complex (MHC) proteins is a major event in the cellular immune response. Accurate prediction of the binding between short peptides and class I or class II MHC molecules is an important task in immunoinformatics. SVRMHC which is a novel method to model peptide-MHC binding affinities based on support rector machine regression (SVR) is described in this chapter. SVRMHC is among a small handful of quantitative modeling methods that make predictions about precise binding affinities between a peptide and an MHC molecule. As a kernel-based learning method, SVRMHC has rendered models with demonstrated appealing performance in the practice of modeling peptide-MHC binding.
Resumo:
CGRP receptor binding may be measured using homogenates of cell membranes or intact cells. Here a microcentrifugation-based assay is described that utilizes radioiodinated CGRP in displacement studies to determine the binding parameters for any ligand that interacts with CGRP receptors. A similar assay is described for binding to cultured cells. The protocols may be adapted for other radioligands or for filtration-based assays. The main problems with CGRP binding assays can usually be traced to degradation of the radioligand or displacing ligands. Also, some cell lines fail to express CGRP receptors after extensive passage. CGRP binding assays provide a rapid and easy approach for distinguishing between receptors for CGRP and related peptides such as adrenomedullin and amylin.
Resumo:
Contains songs, partly from English operas, and instrumental music.
Resumo:
Resulting from a series of student-run 'Edge' conferences that have been held in Australia and New Zealand (beginning at RMIT in 1983), The Mesh Book is a collection of essays grouped into themes of Invisible Infrastructures (systems of belief), Immanent Infrastructures (natural systems) and Present Infrastructures (roads and services). Ranging from esoteric discussions to analytical case studies, the book assembles a broad spectrum of ideas on the landscape within the context of Australia and a contemporary study of place.
Resumo:
A surface plasmon resonance-based solution affinity assay is described for measuring the Kd of binding of heparin/heparan sulfate-binding proteins with a variety of ligands. The assay involves the passage of a pre-equilibrated solution of protein and ligand over a sensor chip onto which heparin has been immobilised. Heparin sensor chips prepared by four different methods, including biotin–streptavidin affinity capture and direct covalent attachment to the chip surface, were successfully used in the assay and gave similar Kd values. The assay is applicable to a wide variety of heparin/HS-binding proteins of diverse structure and function (e.g., FGF-1, FGF-2, VEGF, IL-8, MCP-2, ATIII, PF4) and to ligands of varying molecular weight and degree of sulfation (e.g., heparin, PI-88, sucrose octasulfate, naphthalene trisulfonate) and is thus well suited for the rapid screening of ligands in drug discovery applications.