941 resultados para Blink kinematics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The attentional blink reveals the limits of the brain's ability in information processing. It has been extensively studied in people with neurological and psychiatric disturbances to explore the temporal characteristics of information processing and exami

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment to study exotic two-proton emission from excited levels of the odd-Z nucleus P-28 was performed at the National Laboratory of Heavy Ion Research-Radioactive Ion Beam Line (HIRFL-RIBLL) facility. The projectile P-28 at the energy of 46.5 MeV/u was bombarding a Au-197 target to populate the excited states via Coulomb excitation. Complete-kinematics measurements were realized by the array of silicon strip detectors and the CsI + PIN telescope. Two-proton events were selected and the relativistic-kinematics reconstruction was carried out. The spectrum of relative momentum and opening angle between two protons was deduced from Monte Carlo simulations. Experimental results show that two-proton emission from P-28 excited states less than 17.0 MeV is mainly two-body sequential emission or three-body simultaneous decay in phase space. The present simulations cannot distinguish these two decay modes. No obvious diproton emission was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Whole-Arm Manipulator uses every surface to both sense and interact with the environment. To facilitate the analysis and control of a Whole-Arm Manipulator, line geometry is used to describe the location and trajectory of the links. Applications of line kinematics are described and implemented on the MIT Whole-Arm Manipulator (WAM-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been much interest in the area of model-based reasoning within the Artificial Intelligence community, particularly in its application to diagnosis and troubleshooting. The core issue in this thesis, simply put, is, model-based reasoning is fine, but whence the model? Where do the models come from? How do we know we have the right models? What does the right model mean anyway? Our work has three major components. The first component deals with how we determine whether a piece of information is relevant to solving a problem. We have three ways of determining relevance: derivational, situational and an order-of-magnitude reasoning process. The second component deals with the defining and building of models for solving problems. We identify these models, determine what we need to know about them, and importantly, determine when they are appropriate. Currently, the system has a collection of four basic models and two hybrid models. This collection of models has been successfully tested on a set of fifteen simple kinematics problems. The third major component of our work deals with how the models are selected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents issues relating to the kinematics and control of dexterous robotic hands using the Utah-MIT hand as an illustrative example. The emphasis throughout is on the actual implementation and testing of the theoretical concepts presented. The kinematics of such hands is interesting and complicated owing to the large number of degrees of freedom involved. The implementation of position and force control algorithms on such tendon driven hands has previously suffered from inefficient formulations and a lack of sophisticated computer hardware. Both these problems are addressed in this report. A multiprocessor architecture has been built with high performance microcomputers on which real-time algorithms can be efficiently implemented. A large software library has also been built to facilitate flexible software development on this architecture. The position and force control algorithms described herein have been implemented and tested on this hardware.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A human-computer interface (HCI) system designed for use by people with severe disabilities is presented. People that are severely paralyzed or afflicted with diseases such as ALS (Lou Gehrig's disease) or multiple sclerosis are unable to move or control any parts of their bodies except for their eyes. The system presented here detects the user's eye blinks and analyzes the pattern and duration of the blinks, using them to provide input to the computer in the form of a mouse click. After the automatic initialization of the system occurs from the processing of the user's involuntary eye blinks in the first few seconds of use, the eye is tracked in real time using correlation with an online template. If the user's depth changes significantly or rapid head movement occurs, the system is automatically reinitialized. There are no lighting requirements nor offline templates needed for the proper functioning of the system. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second. Extensive experiments were conducted to determine both the system's accuracy in classifying voluntary and involuntary blinks, as well as the system's fitness in varying environment conditions, such as alternative camera placements and different lighting conditions. These experiments on eight test subjects yielded an overall detection accuracy of 95.3%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biomechanical model of the human oculomotor plant kinematics in 3-D as a function of muscle length changes is presented. It can represent a range of alternative interpretations of the data as a function of one parameter. The model is free from such deficits as singularities and the nesting of axes found in alternative formulations such as the spherical wrist (Paul, l98l). The equations of motion are defined on a quaternion based representation of eye rotations and are compact atnd computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for self-organization of the coordinate transformations required for spatial reaching is presented. During a motor babbling phase, a mapping from spatial coordinate directions to joint motion directions is learned. After learning, the model is able to produce straight-line spatial velocity trajectories with characteristic bell-shaped spatial velocity profiles, as observed in human reaches. Simulation results are presented for transverse plane reaching using a two degree-of-freedom arm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study attempts to characterise the electromyographic activity and kinematics exhibited during the performance of take-off for a pole vaulting short run-up educational exercise, for different expertise levels. Two groups (experts and novices) participated in this study. Both groups were asked to execute their take-off technique for that specific exercise. Among the kinematics variables studied, the knee, hip and ankle angles and the hip and knee angular velocities were significantly different. There were also significant differences in the EMG variables, especially in terms of (i) biceps femoris and gastrocnemius lateralis activity at touchdown and (ii) vastus lateralis and gastrocnemius lateralis activity during take-off. During touchdown, the experts tended to increase the stiffness of the take-off leg to decrease braking. Novices exhibited less stiffness in the take-off leg due to their tendency to maintain a tighter knee angle. Novices also transferred less energy forward during take-off due to lack of contraction in the vastus lateralis, which is known to contribute to forward energy transfers. This study highlights the differences in both groups in terms of muscular and angular control according to the studied variables. Such studies of pole vaulting could be useful to help novices to learn expert's technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The critical phase, in jumping events in track and field, appears to be between touchdown and take-off. Since obvious similarities exist between the take off phase in both long jump and pole vault, numerous 3D kinematics and electromyographic studies have only looked at long jump. Currently there are few detailed kinematics electromyographic data on the pole vault take-off phase. The aim of this study was therefore to characterise kinematics and electromyographic variables during the take-off phase to provide a better understanding of this phase in pole vaulting and its role in performance outcome. Material and methods: Six pole-vaulters took part in the study. Kinematics data were captured with retro reflective markers fixed on the body. Hip, knee and ankle angle were calculated. Differential bipolar surface electrodes were placed on the following muscles of the take-off leg: tibialis anterior, lateral gastrocnemius, vastus lateralis, rectus femoris, bicep femoris and gluteus maximus. EMG activity was synchronously acquired with the kinematic data. EMG data were rectified and smoothed using a second order low pass Butterworth Bidirectional filter (resulting in a 4th order filter) with a cut-off frequency of 14 Hz. Results: Evolution of hip, knee and ankle angle show no significant differences during the last step before touchdown, the take-off phase and the beginning of fly phase. Meanwhile, strong differences in EMG signal are noted inter and intra pole vaulter. However for a same subject the EMG activities seem to converge to some phase locked point. Discussion: All pole vaulters have approximately the same visible coordination This coordination reflects a different muscular control among pole vaulters but also for a considered pole vaulter. These phase locked point could be considered as invariant of motor control i.e. a prerequisite for a normal sequence of the movement and performance realization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first detailed spatio-kinematical analysis and modelling of the southern planetary nebula SuWt 2. This object presents a problem for current theories of planetary nebula formation and evolution, as it is not known to contain a central post-main-sequence star. Deep narrow-band [NII]6584Å images reveal the presence of faint bipolar lobes emanating from the edges of the nebular ring. Long-slit observations of the Ha and [NII]6584Å emission lines were obtained using the ESO (European Southern Observatory) Multi-Mode Instrument on the 3.6-m ESO New Technology Telescope. The spectra reveal the nebular morphology as a bright torus encircling the waist of an extended bipolar structure. By deprojection, the inclination of the ring is found to be 68° +/- 2° (cf. ~90° for the double A-type binary believed to lie at the centre of the nebula), and the ring expansion velocity is found to be 28 kms-1. Our findings are discussed with relation to possible formation scenarios for SuWt 2. Through comparison of the nebular heliocentric systemic velocity, found here to be -25 +/- 5km s-1, and the heliocentric systemic velocity of the double A-type binary, we conclude that neither component of the binary could have been the nebular progenitor. However, we are unable to rule out the presence of a third component to the system, which would have been the nebula progenitor.