977 resultados para Binuclear Pd(II) compounds
Resumo:
This work describes the synthesis, characterization, and the thermal behavior investigation of four palladium(II) complexes with general formulae [PdX(2)(mba)(2)], in which mba = N-methylbenzylamine and X = OAc(-) (1), Cl(-) (2), Br(-) (3) or I(-) (4). The complexes were characterized by elemental analysis, infrared vibrational spectroscopy, and (1)H nuclear magnetic resonance. The stoichiometry of the complexes was established by means of elemental analysis and thermogravimetry (TG). TG/DTA curves showed that the thermodecomposition of the four complexes occurred in 3-4 steps, leading to metallic palladium as final residue. The palladium content found in all curves was in agreement with the mass percentages calculated for the complexes. The following thermal stability sequence was found: 3 > 2 > 4 > 1. The geometry optimization of 1, 2, 3, and 4, calculated using the DFT/B3LYP method, yielded a slightly distorted square planar environment around the Pd(II) ion made by two anionic groups and two nitrogen atoms from the mba ligand (N1 and N2), in a trans-relationship.
Resumo:
This paper describes the preparation of thin titanium films via sol-gel route and their subsequent chemical modification by anchoring with 2-aminothiazole ligand and Pd(II) ion sorption, aiming to maximize the photocatalytic activity. The material was characterized by diffuse reflectance infrared Fourier transform spectroscopy, ultraviolet and visible spectrometry, X-ray diffractometry, and scanning electronic microscopy. The amount of palladium adsorbed on the film's surface, determined by graphite furnace atomic absorption spectrometry, showed a value of 2.69 x 10(16) atoms CM-2. The photocatalytic tests indicated that the functionalization with 2-aminothiazole and the adsorption of palladium (II) were determinants in the semiconductor's enhanced photocatalytic activity. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work describes the synthesis and characterization of two novel Pd(II) pyrazolyl complexes of the type [PdX2(HdmPz)(2)](n) {X=SCN- (1), N-3(-) (2); HdmPz=3,5-dimethylpyrazole} that self-assemble through N-H...NCS or N-H...NNN hydrogen bonds to yield infinite one-dimensional chains, as confirmed by single crystal X-ray study on 1. The expected solid state polymeric structure for 2 is slowly broken up in CHCl3 Solution, leading to an equilibrium mixture of cis and trans-[Pd(N-3)(2)(HdmPz)(2)] monomers, as demonstrated by time-dependent IR and NMR studies. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
A new series of complexes of general formulae [PdX2(tmdmPz)] {X = Cl (1), Br (2), I (3), SCN (4); tmdmPz = N′-methyl-3,5-dimethyl-1- thiocarbamoylpyrazole} have been synthesized and characterized by elemental analysis, molar conductivities, IR, 1H and 13C{ 1H} NMR spectroscopy. In these complexes, the tmdmPz coordinates to Pd(II) center as a neutral N,S-chelating ligand. The geometries of the complexes have been optimized with the DFT method. Cytotoxicity evaluation against LM3 (mammary adenocarcinoma) and LP07 (lung adenocarcinoma) cell lines indicated that complexes 1-4 were more active than cisplatin. The binding of the complexes with a purine base (guanosine) was investigated by 1H NMR and mass spectrometry, showing that the coordination of guanosine occurs through N7. Electrophoretic DNA migration studies showed that all of them modify the DNA tertiary structure. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A variety of modified nucleosides to improve antisense oligodeoxynucleotide properties such as target affinity, nuclease resistance, and pharmacokinetics were developed in the last two decades. In the context of conformational restriction we present here the synthesis of the [4.3.0]-bicyclo-DNA thymine monomer via Pd(II)-mediated ring expansion of an intermediate of the tricyclo-DNA synthesis.
Resumo:
A novel procedure for the preparation of solid Pd(II)-based catalysts consisting of the anchorage of designed Pd(II)-complexes on an activated carbon (AC) surface is reported. Two molecules of the Ar–S–F type (where Ar is a plane-pyrimidine moiety, F a Pd(II)-ligand and S an aliphatic linker) differing in F, were grafted on AC by π–π stacking of the Ar moiety and the graphene planes of the AC, thus favouring the retaining of the metal-complexing ability of F. Adsorption of Pd(II) by the AC/Ar–S–F hybrids occurs via Pd(II)-complexation by F. After deep characterization, the catalytic activities of the AC/Ar–S–F/Pd(II) hybrids on the hydrogenation of 1-octene in methanol as a catalytic test were evaluated. 100% conversion to n-octane at T = 323.1 K and P = 15 bar, was obtained with both catalysts and most of Pd(II) was reduced to Pd(0) nanoparticles, which remained on the AC surface. Reusing the catalysts in three additional cycles reveals that the catalyst bearing the F ligand with a larger Pd-complexing ability showed no loss of activity (100% conversion to n-octane) which is assigned to its larger structural stability. The catalyst with the weaker F ligand underwent a progressive loss of activity (from 100% to 79% in four cycles), due to the constant aggregation of the Pd(0) nanoparticles. Milder conditions, T = 303.1 K and P = 1.5 bar, prevent the aggregation of the Pd(0) nanoparticles in this catalyst allowing the retention of the high catalytic efficiency (100% conversion) in four reaction cycles.
Resumo:
Patellamide D (patH(4)) is a cyclic octapeptide isolated from the ascidian Lissoclinum patella. The peptide possesses a 24-azacrown-8 macrocyclic structure containing two oxazoline and two thiazole rings, each separated by an amino acid. The present spectrophotometric, electron paramagnetic resonance (EPR) and mass spectral studies show that patellamide D reacts with CuCl, and triethylamine in acetonitrile to form mononuclear and binuclear copper(II) complexes containing chloride. Molecular modelling and EPR studies suggest that the chloride anion bridges the copper(II) ions in the binuclear complex [Cu-2(patH(2))(mu-Cl)](+). These results contrast with a previous study employing both base and methanol, the latter substituting for chloride in the copper(II) complexes en route to the stable mu-carbonato binuclear copper(II) complex [Cu-2 (patH(2))(mu-CO3)]. Solvent clearly plays an important role in both stabilising these metal ion complexes and influencing their chemical reactivities. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L-1 (5,7-dimethyl-3-(2',3',5'-tri-O-benzoyl-beta-D-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L-2 (5,7-dimethyl-3-beta-D-ribofuranosyl-s-triazolo [4,3-a]pyrimidine) and L-3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L-1)](NO3)(2), (Pd(bpy)(L-1)](NO3)(2), cis-Pd(L-3)(2)Cl-2, [Pd-2(L-3)(2)Cl-4]center dot H2O, cis-Pd(L-2)(2)Cl-2 and [Pt-3(L-1)(2)Cl-6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd-2(L-3)(2)Cl-4]center dot H2O complex was established by Xray crystallography. The two L-3 ligands are found in a head to tail orientation, with a (PdPd)-Pd-... distance of 3.1254(17) angstrom.L-1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L-2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L-2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A series of new ruthenium(II) complexes of the general formula [Ru(eta(5)-C5H5)(PP)(L)][PF6] (PP = DPPE or 2PPh(3), L = 4-butoxybenzonitrile or N-(3-cyanophenyl)formamide) and the binuclear iron(II) complex [Fe(eta(5)-C5H5)(PP)(mu-L)(PP)(eta(5)-C5H5)Fe][PF6](2) (L = (E)-2-(3-(4-nitrophenyl)allylidene)malononitrile, that has been also newly synthesized) have been prepared and studied to evaluate their potential in the second harmonic generation property. All the new compounds were fully characterized by NMR, IR and UV-Vis spectroscopies and their electrochemistry behaviour was studied by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of three of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at fundamental wavelength of 1500 nm and the calculated static beta(0) values are found to fall in the range 65-212 x 10(-30) esu. Compound presenting beta(0) = 212 x 10(-30) esu has revealed to be 1.2 times more efficient than urea standard in the second harmonic generation (SHG) property, measured in the solid state by Kurtz powder technique, using a Nd:YAG laser (1064 nm). (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A series of palladium(II) thiosaccharinates with triphenylphosphane (PPh(3)), bis(diphenylphosphanyl)methane (dppm), and bis(diphenylphosphanyl)ethane (dppe) have been prepared and characterized. From mixtures of thiosaccharin, Htsac, and palladium(II) acetylacetonate, Pd(acac)(2), the palladium(II) thiosaccharinate, Pd(tsac)(2) (tsac: thiosaccharinate anion) (1) was prepared. The reaction of I with PPh(3), dppm, and dppe leads to the mononuclear species Pd(tsac)(2)(PPh(3))(2)center dot MeCN (2), [Pd(tsac)(2)(dppm)] (3), Pd(tsac)(2)(dppm)(2) (4), and [Pd(tsac)(2)(dppe)]center dot MeCN (5). Compounds 2, 4, and 5 have been prepared also by the reaction of Pd(acac)(2) with the corresponding phosphane and Htsac. All the new complexes have been characterized by chemical analysis, UV/Vis, IR, and Raman spectroscopy. Some of them have been also characterized by NMR spectroscopy. The crystalline structures of complexes 3, and 5 have been studied by X-ray diffraction techniques. Complex 3 crystallizes in the monoclinic space group P2(1)/n with a = 16.3537(2), b = 13.3981(3), c = 35.2277(7) angstrom, beta = 91.284(1)degrees, and Z = 8 molecules per unit cell, and complex 5 in P2(1)/n with a = 10.6445(8), b = 26.412(3), c = 15.781(2) angstrom, beta = 107.996(7)degrees, and Z = 4. In compounds 3 and 5, the palladium ions are in a distorted square planar environment. They are closely related, having two sulfur atoms of two thiosaccharinate anions, and two phosphorus atoms of one molecule of dppm or dppe, respectively, bonded to the Pd(II) atom. The molecular structure of complex 3 is the first reported for a mononuclear Pd(II)-dppm-thionate system.